View source: R/mc_manova_dispersion.R
| mc_manova_dispersion | R Documentation |
Performs Wald tests to generate multivariate analysis-of -variance tables of the significance for the dispersion components for model objects produced by mcglm.
mc_manova_dispersion(object, p_var, names, verbose = TRUE)
object |
An object of |
p_var |
A vector of indices that indicate how the dispersion parameters are related. Parameters with the same index are tested together. |
names |
Names to be shown in the table. |
verbose |
a logical if TRUE print some information about the tests performed. Default verbose = TRUE. |
Type III MANOVA table for dispersion components of mcglm objects.
Lineu Alberto Cavazani de Freitas, lineuacf@gmail.com
mc_manova_I, mc_manova_II and
mc_manova_III.
library(mcglm)
library(Matrix)
library(htmcglm)
data("soya", package = "mcglm")
form.grain <- grain ~ water * pot
form.seed <- seeds ~ water * pot
soya$viablepeasP <- soya$viablepeas / soya$totalpeas
form.peas <- viablepeasP ~ water * pot
Z0 <- mc_id(soya)
Z1 <- mc_mixed(~0 + factor(block), data = soya)
fit_joint <- mcglm(linear_pred = c(form.grain,
form.seed,
form.peas),
matrix_pred = list(c(Z0, Z1),
c(Z0, Z1),
c(Z0, Z1)),
link = c("identity",
"log",
"logit"),
variance = c("constant",
"tweedie",
"binomialP"),
Ntrial = list(NULL,
NULL,
soya$totalpeas),
power_fixed = c(TRUE,TRUE,TRUE),
data = soya)
mc_manova_dispersion(fit_joint,
p_var = c(0,1),
names = c('tau11', 'tau21'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.