Plot function for S3 class "select"

Description

Plot the optimal graph by model selection

Usage

1
2
## S3 method for class 'select'
plot(x, ...)

Arguments

x

An object with S3 class "select"

...

System reserved (No specific usage)

Author(s)

Tuo Zhao, Han Liu, Kathryn Roeder, John Lafferty, and Larry Wasserman
Maintainers: Tuo Zhao<tzhao5@jhu.edu>

References

1. T. Zhao and H. Liu. The huge Package for High-dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research, 2012
2. H. Liu, F. Han, M. Yuan, J. Lafferty and L. Wasserman. High Dimensional Semiparametric Gaussian Copula Graphical Models. Annals of Statistics,2012
3. D. Witten and J. Friedman. New insights and faster computations for the graphical lasso. Journal of Computational and Graphical Statistics, to appear, 2011. 4. Han Liu, Kathryn Roeder and Larry Wasserman. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Advances in Neural Information Processing Systems, 2010.
5. R. Foygel and M. Drton. Extended bayesian information criteria for gaussian graphical models. Advances in Neural Information Processing Systems, 2010.
6. H. Liu, J. Lafferty and L. Wasserman. The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. Journal of Machine Learning Research, 2009
7. J. Fan and J. Lv. Sure independence screening for ultra-high dimensional feature space (with discussion). Journal of Royal Statistical Society B, 2008.
8. O. Banerjee, L. E. Ghaoui, A. d'Aspremont: Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. Journal of Machine Learning Research, 2008.
9. J. Friedman, T. Hastie and R. Tibshirani. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 2008.
10. J. Friedman, T. Hastie and R. Tibshirani. Sparse inverse covariance estimation with the lasso, Biostatistics, 2007.
11. N. Meinshausen and P. Buhlmann. High-dimensional Graphs and Variable Selection with the Lasso. The Annals of Statistics, 2006.

See Also

huge.select