When considering count data, it is often the case that many more zero counts than would be expected of some given distribution are observed. It is well established that data such as this can be reliably modelled using zeroinflated or hurdle distributions, both of which may be applied using the functions in this package. Bayesian analysis methods are used to best model problematic count data that cannot be fit to any typical distribution. The package functions are flexible and versatile, and can be applied to varying count distributions, parameter estimation with or without explanatory variable information, and are able to allow for multiple hurdles as it is also not uncommon that count data have an abundance of largenumber observations which would be considered outliers of the typical distribution. In lieu of throwing out data or misspecifying the typical distribution, these extreme observations can be applied to a second, extreme distribution. With the given functions of this package, such a twohurdle model may be easily specified in order to best manage data that is both zeroinflated and overdispersed.
Package details 


Author  Earvin Balderama [aut, cre], Taylor Trippe [aut] 
Maintainer  Earvin Balderama <ebalderama@luc.edu> 
License  GPL (>= 2) 
Version  0.1 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.