Description Usage Arguments Value Author(s) See Also
MCMC algorithm for updating the likelihood probabilities in 
hurdle model regression using hurdle.
1 2  | update_probs(y, x, hurd, p, q, beta.prior.mean, beta.prior.sd, pZ, pT, pE, beta,
  XB2, XB3, beta.acc, beta.tune)
 | 
y | 
 numeric response vector.  | 
x | 
 optional numeric predictor matrix.  | 
hurd | 
 numeric threshold for 'extreme' observations of two-hurdle models.  | 
p | 
 numeric vector of current 'p' probability parameter values for zero-value observations.  | 
q | 
 numeric vector of current 'q' probability parameter values for 'extreme' observations.  | 
beta.prior.mean | 
 mu parameter for normal prior distributions.  | 
beta.prior.sd | 
 standard deviation for normal prior distributions.  | 
pZ | 
 numeric vector of current 'zero probability' likelihood values.  | 
pT | 
 numeric vector of current 'typical probability' likelihood values.  | 
pE | 
 numeric vector of current 'extreme probability' likelihood values.  | 
beta | 
 numeric matrix of current regression coefficient parameter values.  | 
XB2 | 
 x*beta[,2] product matrix.  | 
XB3 | 
 x*beta[,3] product matrix.  | 
beta.acc | 
 numeric matrix of current MCMC acceptance rates for regression coefficient parameters.  | 
beta.tune | 
 numeric matrix of current MCMC tuning values for regression coefficient estimation.  | 
A list of MCMC-updated regression coefficients for the estimation of the parameters 'p' (the probability of a zero-value observation) and 'q' (the probability of an 'extreme' observation) as well as each coefficient's MCMC acceptance ratio.
Taylor Trippe <ttrippe@luc.edu> 
Earvin Balderama <ebalderama@luc.edu>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.