README.md

iglu

Travis build
status AppVeyor build
status

CRAN_Status_Badge

iglu: Interpreting data from Continuous Glucose Monitors (CGMs)

The R package ‘iglu’ provides functions for outputting relevant metrics for data collected from Continuous Glucose Monitors (CGM). For reference, see “Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control.” Rodbard (2009). For more information on the package, see package website.

To cite:

iglu comes with two example datasets: example_data_1_subject and example_data_5_subject. These data are collected using Dexcom G4 CGM on subjects with Type II diabetes. Each dataset follows the structure iglu’s functions are designed around. Note that the 1 subject data is a subset of the 5 subject data. See the examples below for loading and using the data.

Installation

The R package ‘iglu’ is available from CRAN, use the commands below to install the most recent Github version.

# Plain installation
devtools::install_github("irinagain/iglu") # iglu package

# For installation with vignette
devtools::install_github("irinagain/iglu", build_vignettes = TRUE)

Example

library(iglu)
data(example_data_1_subject) # Load single subject data
## Plot data

# Use plot on dataframe with time and glucose values for time series plot
plot_glu(example_data_1_subject)


# Summary statistics and some metrics
summary_glu(example_data_1_subject)
#> # A tibble: 1 x 7
#> # Groups:   id [1]
#>   id         Min. `1st Qu.` Median  Mean `3rd Qu.`  Max.
#>   <fct>     <dbl>     <dbl>  <dbl> <dbl>     <dbl> <dbl>
#> 1 Subject 1    66        99    112  124.       143   276

in_range_percent(example_data_1_subject)
#> # A tibble: 1 x 3
#>   id        in_range_63_140 in_range_70_180
#>   <fct>               <dbl>           <dbl>
#> 1 Subject 1            73.9            91.7

above_percent(example_data_1_subject, targets = c(80,140,200,250))
#> # A tibble: 1 x 5
#>   id        above_140 above_200 above_250 above_80
#>   <fct>         <dbl>     <dbl>     <dbl>    <dbl>
#> 1 Subject 1      26.7      3.70     0.446     99.4

j_index(example_data_1_subject)
#> # A tibble: 1 x 2
#>   id        J_index
#> * <fct>       <dbl>
#> 1 Subject 1    24.6

conga(example_data_1_subject)
#> # A tibble: 1 x 2
#>   id        CONGA
#> * <fct>     <dbl>
#> 1 Subject 1  37.0

# Load multiple subject data
data(example_data_5_subject)

plot_glu(example_data_5_subject, plottype = 'lasagna', datatype = 'average')


below_percent(example_data_5_subject, targets = c(80,170,260))
#> # A tibble: 5 x 4
#>   id        below_170 below_260 below_80
#>   <fct>         <dbl>     <dbl>    <dbl>
#> 1 Subject 1      89.6      99.7    0.652
#> 2 Subject 2      17.7      78.9    0    
#> 3 Subject 3      73.5      96.0    0.913
#> 4 Subject 4      91.8     100      2.05 
#> 5 Subject 5      55.3      90.3    1.13

mage(example_data_5_subject)
#> # A tibble: 5 x 2
#> # Rowwise: 
#>   id         MAGE
#>   <fct>     <dbl>
#> 1 Subject 1  85.3
#> 2 Subject 2 118. 
#> 3 Subject 3 116. 
#> 4 Subject 4  72.4
#> 5 Subject 5 144.

Shiny App

Shiny App can be accessed locally via

library(iglu)
iglu_shiny()

or globally at https://irinagain.shinyapps.io/shiny_iglu/. As new functionality gets added, local version will be slightly ahead of the global one.



Try the iglu package in your browser

Any scripts or data that you put into this service are public.

iglu documentation built on Sept. 9, 2021, 1:07 a.m.