FFT | R Documentation |
This function is equivalent to R's builtin fft, up to normalisation (R's version is unnormalised, this one is). It calls CImg's implementation. Important note: FFT will compute a multidimensional Fast Fourier Transform, using as many dimensions as you have in the image, meaning that if you have a colour video, it will perform a 4D FFT. If you want to compute separate FFTs across channels, use imsplit.
FFT(im.real, im.imag, inverse = FALSE)
im.real |
The real part of the input (an image) |
im.imag |
The imaginary part (also an image. If missing, assume the signal is real). |
inverse |
If true compute the inverse FFT (default: FALSE) |
a list with components "real" (an image) and "imag" (an image), corresponding to the real and imaginary parts of the transform
Simon Barthelme
im <- as.cimg(function(x,y) sin(x/5)+cos(x/4)*sin(y/2),128,128)
ff <- FFT(im)
plot(ff$real,main="Real part of the transform")
plot(ff$imag,main="Imaginary part of the transform")
sqrt(ff$real^2+ff$imag^2) %>% plot(main="Power spectrum")
#Check that we do get our image back
check <- FFT(ff$real,ff$imag,inverse=TRUE)$real #Should be the same as original
mean((check-im)^2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.