Description Usage Arguments Value Author(s) See Also Examples
This function returns a matrix of probabilities that each missing value is MCAR from specified confidence intervals.
1 | prob.mcar.tab(tab.u,res)
|
tab.u |
A numeric matrix of upper bounds for missing values. |
res |
An output list resulting from the function |
A numeric matrix of estimated probabilities to be MCAR for missing values assuming upper bounds for them (tab.u
).
Quentin Giai Gianetto <quentin2g@yahoo.fr>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | #Simulating data
res.sim=sim.data(nb.pept=2000,nb.miss=600,para=5);
#Imputation of missing values with a MCAR-devoted algorithm: here the slsa algorithm
dat.slsa=impute.slsa(tab=res.sim$dat.obs,conditions=res.sim$condition,repbio=res.sim$repbio);
#Estimation of the mixture model
res=estim.mix(tab=res.sim$dat.obs, tab.imp=dat.slsa, conditions=res.sim$condition);
#Computing probabilities to be MCAR
born=estim.bound(tab=res.sim$dat.obs,conditions=res.sim$condition);
proba=prob.mcar.tab(born$tab.upper,res);
#Histogram of probabilities to be MCAR associated to generated MCAR values
hist(proba[res.sim$list.MCAR[[1]],1],
freq=FALSE,main="Estimated probabilities to be MCAR for known MCAR values",xlab="",col=2);
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.