README.md

inferr: Inferential statistics with R

Author: Aravind Hebbali License: MIT

CRAN_Status_Badge Travis-CI Build
Status AppVeyor Build
Status

Overview

Inferential statistics allows us to make generalizations about populations using data drawn from the population. We use them when it is impractical or impossible to collect data about the whole population under study and instead, we have a sample that represents the population under study and using inferential statistics technique, we make generalizations about the population from the sample.

The inferr package:

As of version 0.1, inferr includes a select set of parametric and non-parametric statistical tests which are listed below:

Installation

# install inferr from CRAN
install.packages("inferr")

# the development version from github
# install.packages("devtools")
devtools::install_github("rsquaredacademy/inferr")

Shiny App

Use infer_launch_shiny_app() to explore the package using a shiny app.

Vignettes

Usage

One Sample t Test
infer_os_t_test(hsb, write, mu = 50, type = 'all')
#>                               One-Sample Statistics                               
#> ---------------------------------------------------------------------------------
#>  Variable    Obs     Mean     Std. Err.    Std. Dev.    [95% Conf. Interval] 
#> ---------------------------------------------------------------------------------
#>   write      200    52.775     0.6702       9.4786       51.4537    54.0969   
#> ---------------------------------------------------------------------------------
#> 
#>                                Ho: mean(write) ~=50                              
#> 
#>         Ha: mean < 50              Ha: mean ~= 50               Ha: mean > 50        
#>          t = 4.141                   t = 4.141                   t = 4.141         
#>        P < t = 1.0000             P > |t| = 0.0001             P > t = 0.0000
ANOVA
infer_oneway_anova(hsb, write, prog)
#>                                 ANOVA                                  
#> ----------------------------------------------------------------------
#>                    Sum of                                             
#>                    Squares     DF     Mean Square      F        Sig.  
#> ----------------------------------------------------------------------
#> Between Groups    3175.698      2      1587.849      21.275    0.0000 
#> Within Groups     14703.177    197      74.635                        
#> Total             17878.875    199                                    
#> ----------------------------------------------------------------------
#> 
#>                  Report                   
#> -----------------------------------------
#> Category     N       Mean      Std. Dev. 
#> -----------------------------------------
#>    1        45      51.333       9.398   
#>    2        105     56.257       7.943   
#>    3        50      46.760       9.319   
#> -----------------------------------------
#> 
#> Number of obs = 200       R-squared     = 0.1776 
#> Root MSE      = 8.6392    Adj R-squared = 0.1693
Chi Square Test of Independence
infer_chisq_assoc_test(hsb, female, schtyp)
#>                Chi Square Statistics                 
#> 
#> Statistics                     DF    Value      Prob 
#> ----------------------------------------------------
#> Chi-Square                     1    0.0470    0.8284
#> Likelihood Ratio Chi-Square    1    0.0471    0.8282
#> Continuity Adj. Chi-Square     1    0.0005    0.9822
#> Mantel-Haenszel Chi-Square     1    0.0468    0.8287
#> Phi Coefficient                     0.0153          
#> Contingency Coefficient             0.0153          
#> Cramer's V                          0.0153          
#> ----------------------------------------------------
Levene’s Test
infer_levene_test(hsb, read, group_var = race)
#>            Summary Statistics             
#> Levels    Frequency    Mean     Std. Dev  
#> -----------------------------------------
#>   1          24        46.67      10.24   
#>   2          11        51.91      7.66    
#>   3          20        46.8       7.12    
#>   4          145       53.92      10.28   
#> -----------------------------------------
#> Total        200       52.23      10.25   
#> -----------------------------------------
#> 
#>                              Test Statistics                              
#> -------------------------------------------------------------------------
#> Statistic                            Num DF    Den DF         F    Pr > F 
#> -------------------------------------------------------------------------
#> Brown and Forsythe                        3       196      3.44    0.0179 
#> Levene                                    3       196    3.4792     0.017 
#> Brown and Forsythe (Trimmed Mean)         3       196    3.3936     0.019 
#> -------------------------------------------------------------------------
Cochran’s Q Test
infer_cochran_qtest(exam, exam1, exam2, exam3)
#>    Test Statistics     
#> ----------------------
#> N                   15 
#> Cochran's Q       4.75 
#> df                   2 
#> p value          0.093 
#> ----------------------
McNemar Test
hb <-
   hsb %>%
     mutate(
       himath = if_else(math > 60, 1, 0),
       hiread = if_else(read > 60, 1, 0)
     )
infer_mcnemar_test(hb, himath, hiread)
#>            Controls 
#> ---------------------------------
#> Cases       0       1       Total 
#> ---------------------------------
#>   0        135      21        156 
#>   1         18      26         44 
#> ---------------------------------
#> Total      153      47        200 
#> ---------------------------------
#> 
#>        McNemar's Test        
#> ----------------------------
#> McNemar's chi2        0.2308 
#> DF                         1 
#> Pr > chi2              0.631 
#> Exact Pr >= chi2      0.7493 
#> ----------------------------
#> 
#>        Kappa Coefficient         
#> --------------------------------
#> Kappa                     0.4454 
#> ASE                        0.075 
#> 95% Lower Conf Limit      0.2984 
#> 95% Upper Conf Limit      0.5923 
#> --------------------------------
#> 
#> Proportion With Factor 
#> ----------------------
#> cases             0.78 
#> controls         0.765 
#> ratio           1.0196 
#> odds ratio      1.1667 
#> ----------------------

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.



Try the inferr package in your browser

Any scripts or data that you put into this service are public.

inferr documentation built on May 2, 2019, 6:23 a.m.