table_17_18: A 3rd order polynomial with data right symmetry and no error In inflection: Finds the Inflection Point of a Curve

Description

Data used for creating Table 17 and 18 of arXiv:1206.5478v2

Usage

 `1` ```data("table_17_18") ```

Format

A data frame with 501 observations on the following 2 variables.

`x`

a numeric vector

`y`

a numeric vector

Details

Table 17: Symmetric 3rd order polynomial, data right asymmetry, p=2.5, n=500, [-2, 8], no-error

Table 18: ESE & EDE iterations for 3rd order polynomial, p=5, p=2.5, n=500, [-2, 8], no-error

References

Christopoulos, DT (2014). Developing methods for identifying the inflection point of a convex/concave curve. arXiv:1206.5478v2 [math.NA]

Examples

 ```1 2 3 4 5 6``` ```data("table_17_18") dh=table_17_18 plot(dh,pch=19,cex=0.1) findiplist(dh\$x,dh\$y,0) bese(dh\$x,dh\$y,0) bede(dh\$x,dh\$y,0) ```

Example output

```    j1  j2  chi
ESE 88 338 2.24
EDE 80 372 2.50
\$iplast
[1] 2.5

\$iters
n     a    b  ESE
1 501 -2.00 8.00 2.24
2 251  1.38 3.88 2.63
3 126  1.80 3.06 2.43
4  64  2.22 2.86 2.54
5  33  2.32 2.64 2.48
6  17  2.42 2.58 2.50
7   9  2.46 2.54 2.50
8   5  2.48 2.52 2.50

\$iplast
[1] 2.5

\$iters
n     a    b EDE
1  501 -2.00 8.00 2.5
2  293  0.82 4.18 2.5
3  169  1.54 3.46 2.5
4   97  1.94 3.06 2.5
5   57  2.18 2.82 2.5
6   33  2.32 2.68 2.5
7   19  2.40 2.60 2.5
8   11  2.44 2.56 2.5
9    7  2.46 2.54 2.5
10   5  2.48 2.52 2.5
```

inflection documentation built on June 28, 2019, 5:03 p.m.