Lindley Information (i.e., Information Utility) Upper Bound

Description

This function calculates the upper bound to the Lindley information (i.e., information utility) given a prior.

Usage

1
iota.u(prior, range.int = c(-Inf, Inf))

Arguments

prior

a prior in the form of a function.

range.int

the range of integration; defaults to c(-Inf, Inf).

Details

This function calculates the upper bound to the Lindley information (i.e., information utility) given a prior. It is identical to the entropy of the prior.

Note that the range of integration may have to be changed; the integration function sometimes throws an error with infinite limits.

Value

The upper bound to the Lindley information; the entropy of the prior.

Author(s)

Kristian E. Markon

References

Markon, K. E. (2013). Information utility: Quantifying the total psychometric information provided by a measure. Psychological Methods, 18, 15-35. doi: 10.1037/a0030638..

See Also

Jeffreys, nmru, iota.l

Examples

1
2
3
4
ltm.lsat <- ltm(LSAT~z1, IRT=FALSE)

iota.u(Jeffreys(ltm.lsat))
iota.u(Jeffreys(ltm.lsat), range.int=c(-20,20))