View source: R/get_parameters_bayesian.R
get_parameters.BGGM | R Documentation |
Returns the coefficients (or posterior samples for Bayesian models) from a model.
## S3 method for class 'BGGM'
get_parameters(
x,
component = c("correlation", "conditional", "intercept", "all"),
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'MCMCglmm'
get_parameters(
x,
effects = c("fixed", "random", "all"),
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'BFBayesFactor'
get_parameters(
x,
effects = c("all", "fixed", "random"),
component = c("all", "extra"),
iterations = 4000,
progress = FALSE,
verbose = TRUE,
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'stanmvreg'
get_parameters(
x,
effects = c("fixed", "random", "all"),
parameters = NULL,
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'brmsfit'
get_parameters(
x,
effects = "fixed",
component = "all",
parameters = NULL,
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'stanreg'
get_parameters(
x,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),
parameters = NULL,
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'bayesx'
get_parameters(
x,
component = c("conditional", "smooth_terms", "all"),
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'bamlss'
get_parameters(
x,
component = c("all", "conditional", "smooth_terms", "location", "distributional",
"auxiliary"),
parameters = NULL,
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'sim.merMod'
get_parameters(
x,
effects = c("fixed", "random", "all"),
parameters = NULL,
summary = FALSE,
centrality = "mean",
...
)
## S3 method for class 'sim'
get_parameters(x, parameters = NULL, summary = FALSE, centrality = "mean", ...)
x |
A fitted model. |
component |
Should all predictor variables, predictor variables for the conditional model, the zero-inflated part of the model, the dispersion term or the instrumental variables be returned? Applies to models with zero-inflated and/or dispersion formula, or to models with instrumental variable (so called fixed-effects regressions). May be abbreviated. Note that the conditional component is also called count or mean component, depending on the model. |
summary |
Logical, indicates whether the full posterior samples
( |
centrality |
Only for models with posterior samples, and when
|
... |
Currently not used. |
effects |
Should parameters for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated. |
iterations |
Number of posterior draws. |
progress |
Display progress. |
verbose |
Toggle messages and warnings. |
parameters |
Regular expression pattern that describes the parameters that should be returned. |
In most cases when models either return different "effects" (fixed,
random) or "components" (conditional, zero-inflated, ...), the arguments
effects
and component
can be used.
The posterior samples from the requested parameters as data frame.
If summary = TRUE
, returns a data frame with two columns: the
parameter names and the related point estimates (based on centrality
).
Note that for BFBayesFactor
models (from the BayesFactor package),
posteriors are only extracted from the first numerator model (i.e.,
model[1]
). If you want to apply some function foo()
to another
model stored in the BFBayesFactor
object, index it directly, e.g.
foo(model[2])
, foo(1/model[5])
, etc.
See also bayestestR::weighted_posteriors()
.
data(mtcars)
m <- lm(mpg ~ wt + cyl + vs, data = mtcars)
get_parameters(m)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.