Nothing
test_that("Test TFRP", {
factors = factors[,-1]
returns = returns[,-1]
n_factors = ncol(factors)
n_returns = ncol(returns)
# Calculating the covariance between factors and returns, and the variance of returns.
covariance_factors_returns = stats::cov(factors, returns)
variance_returns = stats::cov(returns)
mean_returns = matrix(colMeans(returns), n_returns, 1)
# Computing risk premia using the tradable factor risk premia formula.
risk_premia = covariance_factors_returns %*% solve(variance_returns, mean_returns)
risk_premia = unname(risk_premia)
# Testing basic functionality of TFRP without errors including standard errors.
expect_no_error(TFRP(returns, factors, include_standard_errors = TRUE))
# Test if prewhite works
expect_no_error(TFRP(returns, factors, include_standard_errors = TRUE, hac_prewhite = TRUE))
# Testing error handling for incorrect dimensions (transposed matrices).
expect_error(TFRP(t(returns), factors, include_standard_errors = TRUE))
expect_error(TFRP(returns, t(factors), include_standard_errors = TRUE))
expect_error(TFRP(t(returns), t(factors), include_standard_errors = TRUE))
# Testing errors for wrong input types
expect_error(TFRP(c(), factors, include_standard_errors = TRUE))
expect_error(TFRP(returns, c(), include_standard_errors = TRUE, hac_prewhite = "c"))
expect_error(TFRP(returns, factors, include_standard_errors = "c"))
expect_error(TFRP(returns, factors, include_standard_errors = TRUE, hac_prewhite = "c"))
# Test if the function correctly throws an error when 'returns' has fewer rows than 'factors'.
expect_error(TFRP(returns[1:(nrow(returns)-5),], factors))
# Test if the function correctly throws an error when 'factors' has fewer rows than 'returns'.
expect_error(TFRP(returns, factors[1:(nrow(factors)-5),]))
# Getting results from TFRP for further validations.
ifrp = TFRP(returns, factors, include_standard_errors = TRUE)
# Validating the length of the risk premia and standard errors vectors.
expect_length(ifrp$risk_premia, n_factors)
expect_length(ifrp$standard_errors, n_factors)
# Comparing computed risk premia with the expected values from manual calculations.
expect_equal(ifrp$risk_premia, risk_premia, tolerance = 1e-8)
# Ensuring consistency in the risk premia calculation with and without standard errors.
expect_equal(
ifrp$risk_premia,
TFRP(returns, factors, include_standard_errors = FALSE)$risk_premia,
tolerance = 1e-8
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.