Description Usage Arguments Value References Examples
This function provides the implementation of integrated survival and binary high dimensiona regression utilizing Horseshoe prior on the paramters
1 2 | aftprobiths(ct, z, X, burn = 1000, nmc = 5000, thin = 1,
alpha = 0.05, Xtest = NULL, cttest = NULL, ztest = NULL)
|
ct |
survival response, a n*2 matrix with first column as response and second column as right censored indicator, 1 is event time and 0 is right censored. |
z |
binary response, a n*1 vector with numeric values 0 or 1. |
X |
Matrix of covariates, dimension n*p. |
burn |
Number of burn-in MCMC samples. Default is 1000. |
nmc |
Number of posterior draws to be saved. Default is 5000. |
thin |
Thinning parameter of the chain. Default is 1 (no thinning). |
alpha |
Level for the credible intervals. For example, alpha = 0.05 results in 95% credible intervals. |
Xtest |
test design matrix. |
cttest |
test survival response. |
ztest |
test binary response. |
Beta.sHat |
Posterior mean of β for survival model, a p by 1 vector. |
Beta.bHat |
Posterior mean of β for binary model, a p by 1 vector. |
LeftCI.s |
The left bounds of the credible intervals for Beta.sHat. |
RightCI.s |
The right bounds of the credible intervals for Beta.sHat. |
LeftCI.b |
The left bounds of the credible intervals for Beta.bHat. |
RightCI.b |
The right bounds of the credible intervals for Beta.bHat. |
Beta.sMedian |
Posterior median of beta for survival model, a p by 1 vector. |
Beta.bMedian |
Posterior median of beta for binary model, a p by 1 vector. |
SigmaHat |
Posterior mean of variance covariance matrix. |
LambdaHat |
Posterior mean of λ, a p*1 vector. |
TauHat |
Posterior mean of τ, a 2*1 vector. |
Beta.sSamples |
Posterior samples of β for survival model. |
Beta.bSamples |
Posterior samples of β for binary model. |
LambdaSamples |
Posterior samples of λ. |
TauSamples |
Posterior samples of τ. |
SigmaSamples |
Posterior samples of variance covariance matrix. |
DIC.s |
DIC for survival model. |
DIC.b |
DIC for binary model. |
SurvivalHat |
Predictive survival probability. |
LogTimeHat |
Predictive log time. |
Maity, A. K., Carroll, R. J., and Mallick, B. K. (2019) "Integration of Survival and Binary Data for Variable Selection and Prediction: A Bayesian Approach", Journal of the Royal Statistical Society: Series C (Applied Statistics).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | burnin <- 50
nmc <- 150
thin <- 1
y.sd <- 1 # standard deviation of the response
p <- 100 # number of predictors
ntrain <- 100 # training size
ntest <- 50 # test size
n <- ntest + ntrain # sample size
q <- 10 # number of true predictos
beta.t <- c(sample(x = c(1, -1), size = q, replace = TRUE), rep(0, p - q)) # randomly assign sign
Sigma <- matrix(0.9, nrow = p, ncol = p)
for(j in 1:p)
{
Sigma[j, j] <- 1
}
x <- mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = Sigma) # correlated design matrix
zmean <- x %*% beta.t
tmean <- x %*% beta.t
yCorr <- 0.5
yCov <- matrix(c(1, yCorr, yCorr, 1), nrow = 2)
y <- mvtnorm::rmvnorm(n, sigma = yCov)
t <- y[, 1] + tmean
z <- ifelse((y[, 2] + zmean) > 0, 1, 0)
X <- scale(as.matrix(x)) # standarization
z <- as.numeric(as.matrix(c(z)))
t <- as.numeric(as.matrix(c(t)))
T <- exp(t) # AFT model
C <- rgamma(n, shape = 1.75, scale = 3) # 42% censoring time
time <- pmin(T, C) # observed time is min of censored and true
status = time == T # set to 1 if event is observed
ct <- as.matrix(cbind(time = time, status = status)) # censored time
# Training set
ztrain <- z[1:ntrain]
cttrain <- ct[1:ntrain, ]
Xtrain <- X[1:ntrain, ]
# Test set
ztest <- z[(ntrain + 1):n]
cttest <- ct[(ntrain + 1):n, ]
Xtest <- X[(ntrain + 1):n, ]
posterior.fit.joint <- aftprobiths(ct = cttrain, z = ztrain, X = Xtrain,
burn = burnin, nmc = nmc, thin = thin,
Xtest = Xtest, cttest = cttest, ztest = ztest)
posterior.fit.joint$Beta.sHat
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.