Nothing
print.ipsecr <- function (x, newdata = NULL, alpha = 0.05, call = TRUE, ...) {
if (!is.null(x$call) & call) {
cat ('\n')
print(x$call)
}
cat ('ipsecr ', x$version, ', ', x$starttime, ', ', x$proctime, ' seconds\n', sep='')
cat ('\n')
print(summary(traps(x$capthist)), terse=TRUE)
cat ('\n')
###################
## Data description
if (ms(x$capthist)) {
print (summary(x$capthist, terse = TRUE))
det <- detector(traps(x$capthist)[[1]])
}
else {
det <- detector(traps(x$capthist))
n <- nrow(x$capthist) # number caught
if (length(dim(x$capthist))>2)
ncapt <- sum(abs(x$capthist))
else
ncapt <- sum(abs(x$capthist)>0)
cat ('N animals : ', n, '\n')
cat ('N detections : ', ncapt, '\n')
cat ('N occasions : ', ncol(x$capthist), '\n')
}
if (any(det %in% .localstuff$countdetectors)) {
cat ('Count model : ')
if (x$details$binomN == 0) cat ('Poisson \n')
else if (x$details$binomN == 1) cat ('Binomial, size from usage\n')
else if (x$details$binomN > 1) cat('Binomial', x$details$binomN, '\n')
}
if (!ms(x$capthist)) {
cat ('Mask area : ', maskarea(x$mask), 'ha \n')
}
####################
## Model description
Npar <- nparameters(x) ## see utility.R
cat ('\n')
cat ('Model : ', model.string(x$model, x$details$userDfn), '\n')
cat ('Fixed (real) : ', fixed.string(x$fixed), '\n')
cat ('Detection fn : ', detectionfunctionname(x$detectfn), '\n')
cat ('Distribution : ', x$details$distribution, '\n')
cat ('N parameters : ', Npar, '\n')
cat ('\n')
cat ('Design points : ', nrow(x$designbeta), '\n')
cat ('Simulations per point for each box', '\n')
for (i in 1:length(x$ip.nsim)) {
cat (i, x$ip.nsim[i] / nrow(x$designbeta), '\n')
}
cat ('\n')
cat ('Beta parameters (coefficients)', '\n')
print(coef(x), ...)
cat ('\n')
cat ('Variance-covariance matrix of beta parameters', '\n')
print (x$beta.vcv, ...)
cat ('\n')
cat ('Variance bootstrap \n')
print(x$variance.bootstrap)
# scale newdata covariates... NOT FINISHED 10 05 08
meanSD <- attr(x$mask,'meanSD',exact = TRUE)
if (!is.null(newdata)) {
for (i in 1:length(newdata)) {
ind <- match (names(newdata[i]),names(meanSD))
if (ind>0 & !is.na(meanSD[1,ind]))
newdata[[i]] <- (newdata[[i]] - meanSD[1,ind]) / meanSD[2,ind]
}
}
cat ('\n')
cat ('Fitted (real) parameters evaluated at base levels of covariates', '\n')
temp <- predict (x, newdata, type = "response", alpha = alpha,
se.fit = x$details$var.nsim>1)
print(temp, ...)
cat ('\n')
}
#################################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.