Nothing
#' Function for computing the Identity Weights
#' @param categ A mandatory parameter representing the vector of all possible ratings.
#' @return A square matrix of identity weights to be used for calculating the unweighted coefficients.
#' @export
identity.weights<-function(categ){
weights<-diag(length(categ))
return (weights)
}
#' Function for computing the Quadratic Weights
#' @param categ A mandatory parameter representing the vector of all possible ratings.
#' @return A square matrix of quadratic weights to be used for calculating the weighted coefficients.
#' @export
quadratic.weights<-function(categ){
q<-length(categ)
weights <- diag(q)
if (is.numeric(categ)) {
categ.vec <- sort(categ)
}
else {
categ.vec<-1:length(categ)
}
xmin<-min(categ.vec)
xmax<-max(categ.vec)
for(k in 1:q){
for(l in 1:q){
weights[k,l] <- 1-(categ.vec[k]-categ.vec[l])^2/(xmax-xmin)^2
}
}
return (weights)
}
#' Function for computing the Linear Weights
#' @param categ A mandatory parameter representing the vector of all possible ratings.
#' @return A square matrix of quadratic weights to be used for calculating the weighted coefficients.
#' @export
linear.weights<-function(categ){
q<-length(categ)
weights <- diag(q)
if (is.numeric(categ)) {
categ.vec <- sort(categ)
}
else {
categ.vec<-1:length(categ)
}
xmin<-min(categ.vec)
xmax<-max(categ.vec)
for(k in 1:q){
for(l in 1:q){
weights[k,l] <- 1-abs(categ.vec[k]-categ.vec[l])/abs(xmax-xmin)
}
}
return (weights)
}
#--------------------------------
#' Function for computing the Radical Weights
#' @param categ A mandatory parameter representing the vector of all possible ratings.
#' @return A square matrix of quadratic weights to be used for calculating the weighted coefficients.
#' @export
radical.weights<-function(categ){
q<-length(categ)
weights <- diag(q)
if (is.numeric(categ)) {
categ.vec <- sort(categ)
}
else {
categ.vec<-1:length(categ)
}
xmin<-min(categ.vec)
xmax<-max(categ.vec)
for(k in 1:q){
for(l in 1:q){
weights[k,l] <- 1-sqrt(abs(categ.vec[k]-categ.vec[l]))/sqrt(abs(xmax-xmin))
}
}
return (weights)
}
#--------------------------------
#' Function for computing the Ratio Weights
#' @param categ A mandatory parameter representing the vector of all possible ratings.
#' @return A square matrix of quadratic weights to be used for calculating the weighted coefficients.
#' @export
ratio.weights<-function(categ){
q<-length(categ)
weights <- diag(q)
if (is.numeric(categ)) {
categ.vec <- sort(categ)
}
else {
categ.vec<-1:length(categ)
}
xmin<-min(categ.vec)
xmax<-max(categ.vec)
for(k in 1:q){
for(l in 1:q){
weights[k,l] <- 1-((categ.vec[k]-categ.vec[l])/(categ.vec[k]+categ.vec[l]))^2 / ((xmax-xmin)/(xmax+xmin))^2
}
}
return (weights)
}
#--------------------------------
#' Function for computing the Circular Weights
#' @param categ A mandatory parameter representing the vector of all possible ratings.
#' @return A square matrix of quadratic weights to be used for calculating the weighted coefficients.
#' @export
circular.weights<-function(categ){
q<-length(categ)
weights <- diag(q)
if (is.numeric(categ)) {
categ.vec <- sort(categ)
}
else {
categ.vec<-1:length(categ)
}
xmin<-min(categ.vec)
xmax<-max(categ.vec)
U = xmax-xmin+1
for(k in 1:q){
for(l in 1:q){
weights[k,l] <- (sin(pi*(categ.vec[k]-categ.vec[l])/U))^2
}
}
weights <- 1-weights/max(weights)
return (weights)
}
#--------------------------------
#' Function for computing the Bipolar Weights
#' @param categ A mandatory parameter representing the vector of all possible ratings.
#' @return A square matrix of quadratic weights to be used for calculating the weighted coefficients.
#' @export
bipolar.weights<-function(categ){
q<-length(categ)
weights <- diag(q)
if (is.numeric(categ)) {
categ.vec <- sort(categ)
}
else {
categ.vec<-1:length(categ)
}
xmin<-min(categ.vec)
xmax<-max(categ.vec)
for(k in 1:q){
for(l in 1:q){
if (k!=l)
weights[k,l] <- (categ.vec[k]-categ.vec[l])^2 / (((categ.vec[k]+categ.vec[l])-2*xmin)*(2*xmax-(categ.vec[k]+categ.vec[l])))
else weights[k,l] <- 0
}
}
weights <- 1-weights/max(weights)
return (weights)
}
#--------------------------------
#' Function for computing the Ordinal Weights
#' @param categ A mandatory parameter representing the vector of all possible ratings.
#' @return A square matrix of quadratic weights to be used for calculating the weighted coefficients.
#' @export
ordinal.weights<-function(categ){
q<-length(categ)
weights <- diag(q)
categ.vec<-1:length(categ)
for(k in 1:q){
for(l in 1:q){
nkl <- max(k,l)-min(k,l)+1
weights[k,l] <- nkl * (nkl-1)/2
}
}
weights <- 1-weights/max(weights)
return (weights)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.