ivmodel-bransonKeele-internal | R Documentation |
ivmodel
functions for Branson and Keele (2020)Internal ivmodel
functions for Branson and Keele (2020)
permuteData.biasedCoin(N, probs)
getBlockPerm(subclassIndicatorTable)
getCompletePerms.meanDiffs(X, indicator, perms = 1000)
getCompletePerms.balance(X, indicator, perms = 1000)
getCompletePerms.md(X, indicator, perms = 1000)
getCompletePerms.absBias(X, D = NULL, Z = NULL, perms = 1000)
getBlockPerms.md(X, indicator, subclass, perms = 1000)
getBlockPerms.absBias(X, D = NULL, Z = NULL, subclass = NULL, perms = 1000)
getBernoulliPerms.md(X, indicator, perms = 1000)
getBernoulliPerms.absBias(X, D = NULL, Z = NULL, perms = 1000)
permuteData.biasedCoin
permutes the treatment indicator according to biased-coin randomization (i.e., Bernoulli trials).
getBlockPerm
permutes an indicator (instrument or exposure) within a subclass.
getCompletePerms.meanDiffs
returns the covariate mean differences across many permutations of an indicator.
getCompletePerms.balance
returns the standardized covariate mean differences across many permutations of an indicator.
getCompletePerms.md
returns the Mahalanobis distance across many permutations of an indicator.
getCompletePerms.absBias
returns the sum of absolute biases across many permutations of an indicator.
getBlockPerms.md
returns the Mahalanobis distance across many block permutations of an indicator.
getBlockPerms.absBias
returns the sum of absolute biases across many block permutations of an indicator.
getBernoulliPerms.md
returns the Mahalanobis distance across many Bernoulli-trial permutations of an indicator.
getBernoulliPerms.absBias
returns the sum of absolute biases across many Bernoulli-trial permutations of an indicator.
Zach Branson and Luke Keele
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.