knitr::opts_chunk$set(echo = TRUE, fig.height=4, fig.width=4)
The ivreg package provides a comprehensive implementation of instrumental variables
regression using two-stage least-squares (2SLS) estimation. The standard
regression functionality (parameter estimation, inference, robust covariances,
predictions, etc.) is derived from and supersedes the ivreg()
function in the
AER package. Additionally, various
regression diagnostics are supported, including hat values, deletion diagnostics such
as studentized residuals and Cook's distances; graphical diagnostics such as
component-plus-residual plots and added-variable plots; and effect plots with partial
residuals.
In order to provide all of this functionality the ivreg package integrates seamlessly with other packages by providing suitable S3 methods, specifically for generic functions in the base-R stats package, and in the car, effects, lmtest, and sandwich packages, among others.
The package is accompanied by two online vignettes, namely this introduction and an article introducing the regression diagnostics and graphics:
The stable release version of ivreg is hosted on the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=ivreg and can be installed along with all dependencies via
install.packages("ivreg", dependencies = TRUE)
The development version of ivreg is hosted on GitHub at https://github.com/zeileis/ivreg/.
It can be conveniently installed via the install_github()
function in the
remotes package:
remotes::install_github("https://github.com/zeileis/ivreg/")
The main function in the ivreg package is ivreg()
, which is a high-level
formula interface to the work-horse ivreg.fit()
function; both functions return
a list of quantities similar to that returned by lm()
(including coefficients, coefficient variance-covariance
matrix, residuals, etc.). In the case of ivreg()
, the returned list is of class "ivreg"
,
for which a wide range of standard methods is available, including print()
,
summary()
, coef()
, vcov()
, anova()
, predict()
, residuals()
, terms()
,
model.matrix()
, formula()
, update()
, hatvalues()
, dfbeta()
, and rstudent()
.
Moreover, methods for functionality from other packages is provided,
and is described in more detail in a companion vignette.
Regressors and instruments for ivreg()
are most easily specified in a
formula with two parts on the right-hand side, for example, y ~ x1 + x2 | x1 + z1 + z2
,
where x1
and x2
are, respectively, exogenous and endogenous explanatory variables, and x1
, z1
, and z2
are
instrumental variables. Both components on the right-hand side of the model formula include
an implied intercept, unless, as in a linear model estimated by lm()
, the intercept is
explicitly excluded via -1
. Exogenous explanatory variables, such as x1
in the example,
must be included among the instruments. A worked example is described immediately below.
As listing exogenous variables in both parts on the right-hand side of the formula
may become tedious if there are many of them, an additional convenience option is to
use a three-part right side like y ~ x1 | x2 | z1 + z2
, listing the exogenous, endogenous,
and instrumental variables (for the endogenous variables only), respectively.
As an initial demonstration of the ivreg package, we investigate
the effect of schooling on earnings in a classical model for wage determination.
The data are from the United States, and are provided in the package as
SchoolingReturns
. This data set was originally studied by David Card, and was subsequently
employed, as here, to illustrate 2SLS estimation in introductory econometrics textbooks. The relevant variables for this
illustration are:
data("SchoolingReturns", package = "ivreg") summary(SchoolingReturns[, 1:8])
A standard wage equation uses a semi-logarithmic linear regression for wage
, estimated by
ordinary least squares (OLS), with years of education
as the primary explanatory variable,
adjusting for a quadratic term in labor-market experience
, as well as for factors
coding ethnicity
, residence in a city (smsa
), and residence in the U.S. south
:
m_ols <- lm(log(wage) ~ education + poly(experience, 2) + ethnicity + smsa + south, data = SchoolingReturns) summary(m_ols)
Thus, OLS estimation yields an estimate of r round(100 * coef(m_ols)["education"], digits = 1)
%
per year for returns to schooling. This estimate is problematic, however, because it can be argued
that education
is endogenous (and hence also experience
, which is taken to be age
minus
education
minus 6). We therefore use geographical proximity to a college when growing
up as an exogenous instrument for education
. Additionally, age
is the natural
exogenous instrument for experience
, while the remaining explanatory variables can be considered
exogenous and are thus used as instruments for themselves.
Although it's a useful strategy to select an effective instrument or instruments for each endogenous
explanatory variable, in 2SLS regression all of the instrumental variables are used to estimate all
of the regression coefficients in the model.
To fit this model with ivreg()
we can simply extend the formula from lm()
above, adding a second part after the |
separator to specify the instrumental variables:
library("ivreg") m_iv <- ivreg(log(wage) ~ education + poly(experience, 2) + ethnicity + smsa + south | nearcollege + poly(age, 2) + ethnicity + smsa + south, data = SchoolingReturns)
Equivalently, the same model can also be specified slightly more concisely using three parts on the right-hand side indicating the exogenous variables, the endogenous variables, and the additional instrumental variables only (in addition to the exogenous variables).
m_iv <- ivreg(log(wage) ~ ethnicity + smsa + south | education + poly(experience, 2) | nearcollege + poly(age, 2), data = SchoolingReturns)
Both models yield the following results:
summary(m_iv)
Thus, using two-stage least squares to estimate the regression yields a much larger
coefficient for the returns to schooling, namely r round(100 * coef(m_iv)["education"], digits = 1)
% per year.
Notice as well that the standard errors of the coefficients are larger for 2SLS estimation
than for OLS, and that, partly as a consequence, evidence for the effects of ethnicity
and the quadratic component of experience
is now weak. These differences are brought
out more clearly when showing coefficients and standard errors side by side, e.g., using the
compareCoefs()
function from the car package or the msummary()
function from the
modelsummary package:
library("modelsummary") m_list <- list(OLS = m_ols, IV = m_iv) msummary(m_list)
The change in coefficients and associated standard errors can also be brought out graphically
using the modelplot()
function from modelsummary which shows the coefficient estimates
along with their 95% confidence intervals. Below we omit the intercept and experience terms
as these are on a different scale than the other coefficients.
modelplot(m_list, coef_omit = "Intercept|experience")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.