View source: R/summary.ivreg.R
confint.ivreg | R Documentation |
"ivreg"
ObjectsSummary method, including Wald tests and (by default) certain diagnostic tests, for
"ivreg"
model objects, as well as other related inference functions.
## S3 method for class 'ivreg'
confint(
object,
parm,
level = 0.95,
component = c("stage2", "stage1"),
complete = TRUE,
vcov. = NULL,
df = NULL,
...
)
## S3 method for class 'ivreg'
summary(object, vcov. = NULL, df = NULL, diagnostics = NULL, ...)
## S3 method for class 'summary.ivreg'
print(
x,
digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),
...
)
## S3 method for class 'ivreg'
anova(object, object2, test = "F", vcov. = NULL, ...)
## S3 method for class 'ivreg'
Anova(mod, test.statistic = c("F", "Chisq"), vcov. = NULL, ...)
## S3 method for class 'ivreg'
linearHypothesis(
model,
hypothesis.matrix,
rhs = NULL,
test = c("F", "Chisq"),
vcov. = NULL,
...
)
object , object2 , model , mod |
An object of class |
parm |
parameters for which confidence intervals are to be computed; a vector or numbers or names; the default is all parameters. |
level |
confidence level; the default is |
component |
Character indicating |
complete |
If |
vcov. |
Optionally either a coefficient covariance matrix or a function to compute such a covariance
matrix from fitted |
df |
For |
... |
arguments to pass down. |
diagnostics |
Report 2SLS "diagnostic" tests in model summary (default is |
x |
An object of class |
digits |
Minimal number of significant digits for printing. |
signif.stars |
Show "significance stars" in summary output? |
test , test.statistic |
Test statistics for ANOVA table computed by |
hypothesis.matrix , rhs |
For formulating a linear hypothesis; see the documentation
for |
ivreg
, ivreg.fit
, ivregDiagnostics
## data and model
data("CigaretteDemand", package = "ivreg")
m <- ivreg(log(packs) ~ log(rincome) | log(rprice) | salestax, data = CigaretteDemand)
## summary including diagnostics
summary(m)
## replicate global F test from summary (against null model) "by hand"
m0 <- ivreg(log(packs) ~ 1, data = CigaretteDemand)
anova(m0, m)
## or via linear hypothesis test
car::linearHypothesis(m, c("log(rincome)", "log(rprice)"))
## confidence intervals
confint(m)
## just the Wald tests for the coefficients
library("lmtest")
coeftest(m)
## plug in a heteroscedasticity-consistent HC1 covariance matrix (from sandwich)
library("sandwich")
## - as a function passing additional type argument through ...
coeftest(m, vcov = vcovHC, type = "HC1")
## - as a function without additional arguments
hc1 <- function(object, ...) vcovHC(object, type = "HC1", ...)
coeftest(m, vcov = hc1)
## - as a matrix
vc1 <- vcovHC(m, type = "HC1")
coeftest(m, vcov = vc1)
## in summary() with diagnostics = TRUE use one of the function specifications,
## the matrix is only possible when diagnostics = FALSE
summary(m, vcov = vcovHC, type = "HC1") ## function + ...
summary(m, vcov = hc1) ## function
summary(m, vcov = vc1, diagnostics = FALSE) ## matrix
## in confint() and anova() any of the three specifications can be used
anova(m0, m, vcov = vcovHC, type = "HC1") ## function + ...
anova(m0, m, vcov = hc1) ## function
anova(m0, m, vcov = vc1) ## matrix
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.