jackknife | R Documentation |
This function creates jackknife samples from the data by sequentially removing d observations from the data, and calculates the estimates by the specified function and its bias, standard error, and confidence intervals.
jackknife(
statistic,
d = 1,
data,
conf = 0.95,
numCores = detectCores(),
weight = FALSE,
hat_values = NULL,
residuals = NULL,
X = NULL,
p = NULL
)
statistic |
a function returning a vector of estimates to be passed to jackknife |
d |
Number of observations to be deleted from data to make jackknife samples. The default is 1 (for delete-1 jackknife). |
data |
Data frame with dependent and independent independent variables specified in the formula |
conf |
Confidence level, a positive number < 1. The default is 0.95. |
numCores |
Number of processors to be used |
weight |
Logical, TRUE for weighted jackknife standard error of regression estimates. Default weight = FALSE |
hat_values |
Vector of hat values (leverages) from the model. Required if 'weight = TRUE |
residuals |
Vector of residuals from the model. Required if |
X |
Model matrix. Required if |
p |
Number of predictors in the model. Required if |
A list containing a summary data frame of jackknife estimates with bias, standard error. t-statistics, and confidence intervals, estimate for the original sample and a data frame with estimates for jackknife samples.
Quenouille, M. H. (1956). Notes on Bias in Estimation. Biometrika, 43(3/4), 353-360. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/2332914")}
Tukey, J. W. (1958). Bias and Confidence in Not-quite Large Samples. Annals of Mathematical Statistics, 29(2), 614-623. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/aoms/1177706647")}
Shi, X. (1988). A note on the delete-d jackknife variance estimators. Statistics & Probability Letters, 6(5), 341-347. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/0167-7152(88)90011-9")}
jackknife.lm()
which is used for jackknifing in linear regression.
library(future)
plan(multisession) # Initialize once per session
# For linear regression coefficients
jk_results <- jackknife(
statistic = function(sub_data) coef(lm(mpg ~ wt + hp, data = sub_data)),
d = 2,
data = mtcars,
conf = 0.95, numCores = 2)
print(jk_results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.