tar_jags_rep | R Documentation |
Internal function. Users should not invoke directly.
tar_jags_rep(
name,
jags_files,
parameters.to.save,
data = quote(list()),
batches = 1L,
reps = 1L,
output = c("summary", "draws", "dic"),
variables = NULL,
summaries = NULL,
summary_args = NULL,
transform = NULL,
combine = TRUE,
n.cluster = 1,
n.chains = 3,
n.iter = 2000,
n.burnin = as.integer(n.iter/2),
n.thin = 1,
jags.module = c("glm", "dic"),
inits = NULL,
RNGname = c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister"),
jags.seed = NULL,
stdout = NULL,
stderr = NULL,
progress.bar = "text",
refresh = 0,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = "qs",
format_df = "fst_tbl",
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")
)
name |
Symbol, base name for the collection of targets. Serves as a prefix for target names. |
jags_files |
Character vector of JAGS model files. If you
supply multiple files, each model will run on the one shared dataset
generated by the code in |
parameters.to.save |
Model parameters to save, passed to
|
data |
Code to generate the |
batches |
Number of batches. Each batch runs a model |
reps |
Number of replications per batch. Ideally, each rep
should produce its own random dataset using the code
supplied to |
output |
Character of length 1 denoting the type of output |
variables |
Character vector of model parameter names. The output posterior summaries are restricted to these variables. |
summaries |
List of summary functions passed to |
summary_args |
List of summary function arguments passed to
|
transform |
Symbol or |
combine |
Logical, whether to create a target to combine all the model results into a single data frame downstream. Convenient, but duplicates data. |
n.cluster |
Number of parallel processes, passed to
|
n.chains |
Number of MCMC chains, passed to
|
n.iter |
Number if iterations (including warmup), passed to
|
n.burnin |
Number of warmup iterations, passed to
|
n.thin |
Thinning interval, passed to
|
jags.module |
Character vector of JAGS modules to load, passed to
|
inits |
Initial values of model parameters, passed to
|
RNGname |
Choice of random number generator, passed to
|
jags.seed |
The |
stdout |
Character of length 1, file path to write the stdout stream
of the model when it runs. Set to |
stderr |
Character of length 1, file path to write the stderr stream
of the model when it runs. Set to |
progress.bar |
Type of progress bar, passed to
|
refresh |
Frequency for refreshing the progress bar, passed to
|
tidy_eval |
Logical, whether to enable tidy evaluation
when interpreting |
packages |
Character vector of packages to load right before
the target runs or the output data is reloaded for
downstream targets. Use |
library |
Character vector of library paths to try
when loading |
format |
Character of length 1, storage format of the data frames
of posterior summaries and other data frames returned by targets.
We recommend efficient data frame formats
such as |
format_df |
Character of length 1, storage format of the data frame
targets such as posterior draws. We recommend efficient data frame formats
such as |
repository |
Character of length 1, remote repository for target storage. Choices:
Note: if |
error |
Character of length 1, what to do if the target stops and throws an error. Options:
|
memory |
Character of length 1, memory strategy.
If |
garbage_collection |
Logical, whether to run |
deployment |
Character of length 1. If |
priority |
Numeric of length 1 between 0 and 1. Controls which
targets get deployed first when multiple competing targets are ready
simultaneously. Targets with priorities closer to 1 get dispatched earlier
(and polled earlier in |
resources |
Object returned by |
storage |
Character of length 1, only relevant to
|
retrieval |
Character of length 1, only relevant to
|
cue |
An optional object from |
description |
Character of length 1, a custom free-form human-readable
text description of the target. Descriptions appear as target labels
in functions like |
tar_jags_rep(name = x, jags_files = "y.jags")
returns a list of targets::tar_target()
objects:
x_file_y
: reproducibly track the jags model file.
x_lines_y
: contents of the jags model file.
x_data
: dynamic branching target with simulated datasets.
x_y
: dynamic branching target with tidy data frames of MCMC summaries.
x
: combine all the model-specific summary targets into
a single data frame with columns to distinguish among the models.
Suppressed if combine
is FALSE
.
Rep-specific random number generator seeds for the data and models
are automatically set based on the batch, rep,
parent target name, and tar_option_get("seed")
. This ensures
the rep-specific seeds do not change when you change the batching
configuration (e.g. 40 batches of 10 reps each vs 20 batches of 20
reps each). Each data seed is in the .seed
list element of the output,
and each JAGS seed is in the .seed column of each JAGS model output.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.