# qtriang: Triangular Quantile Function In jmuOutlier: Permutation Tests for Nonparametric Statistics

## Description

Symmetric triangular density with endpoints equal to `min` and `max`.

## Usage

 `1` ``` qtriang(p, min = 0, max = 1) ```

## Arguments

 `p` Vector of probabilities. `min` Left endpoint of the triangular distribution. `max` Right endpoint of the triangular distribution.

## Details

The triangular distribution has density 4 (x-a) / (b-a)^2 for a ≤ x ≤ μ, and 4 (b-x) / (b-a)^2 for μ < x ≤ b, where a and b are the endpoints, and the mean of the distribution is μ = (a+b) / 2.

## Value

`qtriang` gives the quantile function.

## Author(s)

Steven T. Garren, James Madison University, Harrisonburg, Virginia, USA

`dtriang`, `ptriang`, and `rtriang`.

## Examples

 ```1 2 3``` ```# 5th, 15th, 25th, ..., 95th percentiles from a Triangular( 100, 200 ) distribution. qtriang( seq( 0.05, 0.95, length.out=11 ), 100, 200 ) ```

### Example output

``` [1] 115.8114 126.4575 133.9116 140.0000 145.2769 150.0000 171.2132 180.0000
[9] 186.7423 192.4264 197.4342
```

jmuOutlier documentation built on Aug. 6, 2019, 1:03 a.m.