ClusterSickleJr | R Documentation |
\mathbf{H}
matrixPerform k-means, spectral clustering, clustering based off of the
index of the maximum latent factor, or Louvain community detection on the \mathbf{H}
matrix.
Defaults to k-means.
ClusterSickleJr(
SickleJr,
numclusts,
method = "kmeans",
neighbors = 20,
louvainres = 0.3
)
SickleJr |
An object of class SickleJr |
numclusts |
Number of clusters; can be NULL when method is "max" or "louvain" |
method |
String holding the clustering method: can choose "kmeans" for k-means clustering, "spectral" for spectral clustering, "louvain" for Louvain community detection or "max" for clustering based on the maximum row value; note that "max" is only appropriate for jrSiCKLSNMF with L2 norm row regularization |
neighbors |
Number indicating the number of neighbors to use to generate the graphs for spectral clustering and Louvain community detection: both of these methods require the construction of a graph first (here we use KNN); defaults to 20 and unused when the clustering method equal to "kmeans" or "max" |
louvainres |
Numeric containing the resolution parameter for Louvain community detection; unused for all other methods |
SickleJr- an object of class SickleJr with added clustering information
louvainjrSiCKLSNMF
\insertRefLun2016jrSiCKLSNMF
\insertRefNg2001jrSiCKLSNMF
\insertRefSchliep2016jrSiCKLSNMF
\insertRefmaxclusterjrSiCKLSNMF
SimSickleJrSmall<-ClusterSickleJr(SimSickleJrSmall,3)
SimSickleJrSmall<-ClusterSickleJr(SimSickleJrSmall,method="louvain",neighbors=5)
SimSickleJrSmall<-ClusterSickleJr(SimSickleJrSmall,method="spectral",neighbors=5,numclusts=3)
#DO NOT DO THIS FOR REAL DATA; this is just to illustrate max clustering
SimSickleJrSmall<-SetLambdasandRowReg(SimSickleJrSmall,rowReg="L2Norm")
SimSickleJrSmall<-ClusterSickleJr(SimSickleJrSmall,method="max")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.