RunjrSiCKLSNMF | R Documentation |
Wrapper function to run jrSiCKLSNMF on an object of class SickleJr. Performs jrSiCKLSNMF on the given SickleJr
RunjrSiCKLSNMF(
SickleJr,
rounds = 30000,
differr = 1e-06,
display_progress = TRUE,
lossonsubset = FALSE,
losssubsetsize = dim(SickleJr@H)[1],
minibatch = FALSE,
batchsize = 1000,
random_W_updates = FALSE,
seed = NULL,
minrounds = 200,
suppress_warnings = FALSE,
subsample = 1:dim(SickleJr@normalized.count.matrices[[1]])[2]
)
SickleJr |
An object of class SickleJr |
rounds |
Number of rounds: defaults to 2000 |
differr |
Tolerance for percentage change in loss between updates: defaults to 1e-6 |
display_progress |
Boolean indicating whether to display the progress bar for jrSiCKLSNMF |
lossonsubset |
Boolean indicating whether to use a subset to calculate the loss function rather than the whole dataset |
losssubsetsize |
Size of the subset of data on which to calculate the loss |
minibatch |
Boolean indicating whether to use mini-batch updates |
batchsize |
Size of batch for mini-batch updates |
random_W_updates |
Boolean indicating whether or not to use random_W_updates updates
(i.e. only update |
seed |
Number specifying desired random seed |
minrounds |
Minimum number of rounds: most helpful for the mini-batch algorithm |
suppress_warnings |
Boolean indicating whether to suppress warnings |
subsample |
A numeric used primarily when finding an appropriate number of latent factors: defaults to total number of cells |
An object of class SickleJr with updated \mathbf{W}^v
matrices, updated \mathbf{H}
matrix, and a vector of values for
the loss function added to the Wlist
, H
, and loss
slots, respectively
Cai2008jrSiCKLSNMF
\insertRefjnmf2009jrSiCKLSNMF
\insertRefEddelbuettel2011jrSiCKLSNMF
\insertRefEddelbuettel2014jrSiCKLSNMF
\insertRefElyanow2020jrSiCKLSNMF
\insertRefhalfbakednmfjrSiCKLSNMF
\insertRefLee1999jrSiCKLSNMF
\insertRefLiu2013jrSiCKLSNMF
SimSickleJrSmall<-RunjrSiCKLSNMF(SimSickleJrSmall,rounds=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.