seriate_average | R Documentation |
Correspondence Analysis-Based Seriation
seriate_average(object, ...)
## S4 method for signature 'data.frame'
seriate_average(
object,
margin = c(1, 2),
axes = 1,
sup_row = NULL,
sup_col = NULL,
...
)
## S4 method for signature 'matrix'
seriate_average(
object,
margin = c(1, 2),
axes = 1,
sup_row = NULL,
sup_col = NULL,
...
)
object |
A |
... |
Currently not used. |
margin |
A |
axes |
An |
sup_row |
A |
sup_col |
A |
Correspondence analysis (CA) is an effective method for the seriation of archaeological assemblages. The order of the rows and columns is given by the coordinates along one dimension of the CA space, assumed to account for temporal variation. The direction of temporal change within the correspondence analysis space is arbitrary: additional information is needed to determine the actual order in time.
An AveragePermutationOrder
object.
N. Frerebeau
Ihm, P. (2005). A Contribution to the History of Seriation in Archaeology. In C. Weihs & W. Gaul (Eds.), Classification: The Ubiquitous Challenge. Berlin Heidelberg: Springer, p. 307-316. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/3-540-28084-7_34")}.
dimensio::ca()
Other seriation methods:
as_seriation()
,
assess()
,
order()
,
permute()
,
refine()
,
seriate_rank()
## Replicates Desachy 2004 results
data("compiegne", package = "folio")
## Get seriation order for columns on EPPM using the reciprocal averaging method
## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H
(indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2))
## Get permutation order
order_rows(indices)
order_columns(indices)
## Permute columns
(new <- permute(compiegne, indices))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.