Nothing
#' One-Dimensional Kernel Density Estimation
#'
#' Provides an efficient implementation of univariate local polynomial
#' kernel density estimators that can handle bounded, discrete, and
#' zero-inflated data. The
#' implementation utilizes spline interpolation to reduce memory usage and
#' computational demand for large data sets.
#'
#' @references
#' Geenens, G. (2014). *Probit transformation for kernel density estimation on
#' the unit interval*. Journal of the American Statistical Association,
#' 109:505, 346-358, [arXiv:1303.4121](https://arxiv.org/abs/1303.4121)
#'
#' Geenens, G., Wang, C. (2018). *Local-likelihood transformation kernel
#' density estimation for positive random variables.* Journal of Computational
#' and Graphical Statistics, 27(4), 822-835.
#' [arXiv:1602.04862](https://arxiv.org/abs/1602.04862)
#'
#' Nagler, T. (2018a). *A generic approach to nonparametric function
#' estimation with mixed data.* Statistics & Probability Letters, 137:326–330,
#' [arXiv:1704.07457](https://arxiv.org/abs/1704.07457)
#'
#' Nagler, T. (2018b). *Asymptotic analysis of the jittering kernel density
#' estimator.* Mathematical Methods of Statistics, 27, 32-46.
#' [arXiv:1705.05431](https://arxiv.org/abs/1705.05431)
#'
#' @name kde1d-package
#' @docType package
#' @useDynLib kde1d
#' @importFrom Rcpp sourceCpp
"_PACKAGE"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.