Nothing
#' One-Dimensional Kernel Density Estimation
#'
#' Provides an efficient implementation of univariate local polynomial
#' kernel density estimators that can handle bounded and discrete data. The
#' implementation utilizes spline interpolation to reduce memory usage and
#' computational demand for large data sets.
#'
#' @references
#' Geenens, G. (2014). *Probit transformation for kernel density estimation on
#' the unit interval*. Journal of the American Statistical Association,
#' 109:505, 346-358, [arXiv:1303.4121](https://arxiv.org/abs/1303.4121)
#'
#' Geenens, G., Wang, C. (2018). *Local-likelihood transformation kernel
#' density estimation for positive random variables.* Journal of Computational
#' and Graphical Statistics, to appear,
#' [arXiv:1602.04862](https://arxiv.org/abs/1602.04862)
#'
#' Nagler, T. (2018a). *A generic approach to nonparametric function
#' estimation with mixed data.* Statistics & Probability Letters, 137:326–330,
#' [arXiv:1704.07457](https://arxiv.org/abs/1704.07457)
#'
#' Nagler, T. (2018b). *Asymptotic analysis of the jittering kernel density
#' estimator.* Mathematical Methods of Statistics, in press,
#' [arXiv:1705.05431](https://arxiv.org/abs/1705.05431)
#'
#' @name kde1d-package
#' @docType package
NULL
#' @useDynLib kde1d
#' @importFrom Rcpp sourceCpp
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.