Nothing
#' Kernel Smoothing for Bivariate Copula Densities
#'
#' This package provides fast implementations of kernel estimators for the
#' copula density. Due to its several plotting options it is particularly
#' useful for the exploratory analysis of dependence structures. It can be
#' further used for flexible nonparametric estimation of copula densities
#' and resampling.
#'
#' The function \code{\link{kdecop}} can be used to estimate a copula density
#' with a number of popular kernel estimators. The density estimate can be
#' evaluated on arbitrary points with \code{\link[kdecopula:dkdecop]{dkdecop}};
#' the cdf with \code{\link[kdecopula:pkdecop]{pkdecop}}. Furthermore, synthetic
#' data can be simulated with \code{\link[kdecopula:rkdecop]{rkdecop}}, and
#' several plot options are provided by
#' \code{\link[kdecopula:plot.kdecopula]{plot.kdecopula}}.
#'
#' @name kdecopula
#' @aliases kdecopula-package
#' @docType package
#' @useDynLib kdecopula, .registration = TRUE
#' @importFrom Rcpp evalCpp
#'
#' @author Thomas Nagler
#'
#' @references
#' Nagler, T. (2018)
#' kdecopula: An R Package for the Kernel Estimation of Bivariate Copula
#' Densities.
#' Journal of Statistical Software 84(7), 1-22
#' \cr \cr
#' Gijbels, I. and Mielniczuk, J. (1990).
#' Estimating the density of a copula function.
#' Communications in Statistics - Theory and Methods, 19(2):445-464.
#' \cr \cr
#' Charpentier, A., Fermanian, J.-D., and Scaillet, O. (2006).
#' The estimation of copulas: Theory and practice.
#' In Rank, J., editor, Copulas: From theory to application in finance. Risk Books.
#' \cr \cr
#' Geenens, G., Charpentier, A., and Paindaveine, D. (2017).
#' Probit transformation for nonparametric kernel estimation of the copula
#' density.
#' Bernoulli, 23(3), 1848-1873.
#' \cr \cr
#' Nagler, T. (2014).
#' Kernel Methods for Vine Copula Estimation.
#' Master's Thesis, Technische Universitaet Muenchen,
#' \url{https://mediatum.ub.tum.de/node?id=1231221}
#' \cr \cr
#' Wen, K. and Wu, X. (2015).
#' Transformation-Kernel Estimation of the Copula Density,
#' Working paper,
#' \url{http://agecon2.tamu.edu/people/faculty/wu-ximing/agecon2/public/copula.pdf}
#'
#' @keywords package
#'
#' @examples
#'
#' ## load data and transform with empirical cdf
#' data(wdbc)
#' udat <- apply(wdbc[, -1], 2, function(x) rank(x)/(length(x)+1))
#'
#' ## estimation of copula density of variables 5 and 6
#' dens.est <- kdecop(udat[, 5:6])
#' plot(dens.est)
#'
#' ## evaluate density estimate at (u1,u2)=(0.123,0.321)
#' dkdecop(c(0.123, 0.321), dens.est)
#'
#' ## evaluate cdf estimate at (u1,u2)=(0.123,0.321)
#' pkdecop(c(0.123, 0.321), dens.est)
#'
#' ## simulate 500 samples from density estimate
#' rkdecop(500, dens.est)
#'
NULL
#' Wisconsin Diagnostic Breast Cancer (WDBC)
#'
#' The data contain measurements on cells in suspicious lumps in a woman's
#' breast. Features are computed from a digitized image of a fine needle
#' aspirate (FNA) of a breast mass. They describe characteristics of the cell
#' nuclei present in the image. All samples are classified as either
#' \emph{benign} or \emph{malignant}.
#'
#' Ten real-valued features are computed for each cell nucleus: \cr
#'
#' a) radius (mean of distances from center to points on the perimeter) \cr b)
#' texture (standard deviation of gray-scale values) \cr c) perimeter \cr d)
#' area \cr e) smoothness (local variation in radius lengths) \cr f)
#' compactness (perimeter^2 / area - 1.0) \cr g) concavity (severity of concave
#' portions of the contour) \cr h) concave points (number of concave portions
#' of the contour) \cr i) symmetry \cr j) fractal dimension ("coastline
#' approximation" - 1) \cr
#'
#' The references listed below contain detailed descriptions of how these
#' features are computed.
#'
#' The mean, standard error, and "worst" or largest (mean of the three largest
#' values) of these features were computed for each image, resulting in 30
#' features.
#'
#' @name wdbc
#' @docType data
#'
#'
#' @format \code{wdbc} is a \code{data.frame} with 31 columns. The first column
#' indicates whether the sample is classified as benign (\code{B}) or malignant
#' (\code{M}). The remaining columns contain measurements for 30 features.
#' @note This breast cancer database was obtained from the University of
#' Wisconsin Hospitals, Madison from Dr. William H. Wolberg.
#' @references O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via
#' linear programming",\cr SIAM News, Volume 23, Number 5, September 1990, pp 1
#' & 18.
#'
#' William H. Wolberg and O.L. Mangasarian: "Multisurface method of pattern
#' separation for medical diagnosis applied to breast cytology", \cr
#' Proceedings of the National Academy of Sciences, U.S.A., Volume 87, December
#' 1990, pp 9193-9196.
#'
#' K. P. Bennett & O. L. Mangasarian: "Robust linear programming discrimination
#' of two linearly inseparable sets",\cr Optimization Methods and Software 1,
#' 1992, 23-34 (Gordon & Breach Science Publishers).
#'
#'
#' @source
#' \url{http://mlr.cs.umass.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)}
#' \cr \cr
#' Bache, K. & Lichman, M. (2013).
#' UCI Machine Learning Repository.
#' Irvine, CA: University of California, School of Information and Computer
#' Science.
#'
#' @keywords datasets
#'
#' @examples
#'
#' data(wdbc)
#' str(wdbc)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.