kdensity: Kernel Density Estimation with Parametric Starts and Asymmetric Kernels

Handles univariate non-parametric density estimation with parametric starts and asymmetric kernels in a simple and flexible way. Kernel density estimation with parametric starts involves fitting a parametric density to the data before making a correction with kernel density estimation, see Hjort & Glad (1995) <doi:10.1214/aos/1176324627>. Asymmetric kernels make kernel density estimation more efficient on bounded intervals such as (0, 1) and the positive half-line. Supported asymmetric kernels are the gamma kernel of Chen (2000) <doi:10.1023/A:1004165218295>, the beta kernel of Chen (1999) <doi:10.1016/S0167-9473(99)00010-9>, and the copula kernel of Jones & Henderson (2007) <doi:10.1093/biomet/asm068>. User-supplied kernels, parametric starts, and bandwidths are supported.

Package details

AuthorJonas Moss, Martin Tveten
MaintainerJonas Moss <jonas.gjertsen@gmail.com>
LicenseMIT + file LICENSE
URL https://github.com/JonasMoss/kdensity
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the kdensity package in your browser

Any scripts or data that you put into this service are public.

kdensity documentation built on Oct. 23, 2020, 8:32 p.m.