| kdevine | R Documentation |
Implements the vine-copula based estimator of Nagler and Czado (2016). The
marginal densities are estimated by kde1d, the vine copula
density by kdevinecop. Discrete variables are convoluted with
the uniform distribution (see, Nagler, 2017). If a variable should be treated
as discrete, declare it as ordered(). Factors are expanded into binary
dummy codes.
kdevine(x, mult_1d = NULL, xmin = NULL, xmax = NULL, copula.type = "kde", ...)
x |
( |
mult_1d |
numeric; all bandwidhts for marginal kernel density estimation
are multiplied with |
xmin |
numeric vector of length d; see |
xmax |
numeric vector of length d; see |
copula.type |
either |
... |
further arguments passed to |
An object of class kdevine.
Nagler, T., Czado, C. (2016) Evading the curse of
dimensionality in nonparametric density estimation with simplified vine
copulas. Journal of Multivariate Analysis 151, 69-89
(doi:10.1016/j.jmva.2016.07.003)
Nagler, T. (2017). A generic approach to nonparametric function
estimation with mixed data. arXiv:1704.07457
dkdevine kde1d kdevinecop
# load data
data(wdbc, package = "kdecopula")
# estimate density (use xmin to indicate positive support)
fit <- kdevine(wdbc[, 5:7], xmin = rep(0, 3))
# evaluate density estimate
dkdevine(c(1000, 0.1, 0.1), fit)
# plot simulated data
pairs(rkdevine(nrow(wdbc), fit))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.