kdevinecop | R Documentation |
The function estimates a vine copula density using kernel estimators for the pair copulas (based on the kdecopula package).
kdevinecop(
data,
matrix = NA,
method = "TLL2",
renorm.iter = 3L,
mult = 1,
test.level = NA,
trunc.level = NA,
treecrit = "tau",
cores = 1,
info = FALSE
)
data |
( |
matrix |
R-Vine matrix ( |
method |
see |
renorm.iter |
see |
mult |
see |
test.level |
significance level for independence test. If you provide a
number in |
trunc.level |
integer; the truncation level. All pair copulas in trees above the truncation level will be set to independence. |
treecrit |
criterion for structure selection; defaults to |
cores |
integer; if |
info |
logical; if |
An object of class kdevinecop
. That is, a list containing
T1 , T2 , ... |
lists of the estimted pair copulas in each tree, |
matrix |
the structure matrix of the vine, |
info |
additional information about the fit (if |
Nagler, T., Czado, C. (2016)
Evading the curse of
dimensionality in nonparametric density estimation with simplified vine
copulas.
Journal of Multivariate Analysis 151, 69-89
(doi:10.1016/j.jmva.2016.07.003)
Nagler, T., Schellhase, C. and Czado, C. (2017)
Nonparametric
estimation of simplified vine copula models: comparison of methods
arXiv:1701.00845
Dissmann, J., Brechmann, E. C., Czado, C., and Kurowicka, D. (2013).
Selecting and estimating regular vine copulae and application to financial
returns.
Computational Statistics & Data Analysis, 59(0):52–69.
dkdevinecop
,
kdecop
,
BiCopIndTest
,
foreach
data(wdbc, package = "kdecopula")
# rank-transform to copula data (margins are uniform)
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average")
fit <- kdevinecop(u) # estimate density
dkdevinecop(c(0.1, 0.1, 0.1), fit) # evaluate density estimate
contour(fit) # contour matrix (Gaussian scale)
pairs(rkdevinecop(500, fit)) # plot simulated data
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.