Sequential | R Documentation |
Use this function to construct an empty model to which layers will be added, or pass a list of layers directly to the function. The first layer passed to a Sequential model should have a defined input shape.
Sequential(...)
... |
keras model layers to construct the model from |
Taylor B. Arnold, taylor.arnold@acm.org
Chollet, Francois. 2015. Keras: Deep Learning library for Theano and TensorFlow.
Other model functions: LoadSave
,
Predict
, keras_compile
,
keras_fit
Other layers: Activation
,
ActivityRegularization
,
AdvancedActivation
,
BatchNormalization
, Conv
,
Dense
, Dropout
,
Embedding
, Flatten
,
GaussianNoise
, LayerWrapper
,
LocallyConnected
, Masking
,
MaxPooling
, Permute
,
RNN
, RepeatVector
,
Reshape
if(keras_available()) { X_train <- matrix(rnorm(100 * 10), nrow = 100) Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3) mod <- Sequential() mod$add(Dense(units = 50, input_shape = dim(X_train)[2])) mod$add( Dropout(rate = 0.5)) mod$add(Activation("relu")) mod$add(Dense(units = 3)) mod$add(ActivityRegularization(l1 = 1)) mod$add(Activation("softmax")) keras_compile(mod, loss = 'categorical_crossentropy', optimizer = RMSprop()) keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5, verbose = 0, validation_split = 0.2) # You can also add layers directly as arguments to Sequential() mod <- Sequential( Dense(units = 50, input_shape = ncol(X_train)), Dropout(rate = 0.5), Activation("relu"), Dense(units = 3), ActivityRegularization(l1 = 1), Activation("softmax") ) keras_compile(mod, loss = 'categorical_crossentropy', optimizer = RMSprop()) keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5, verbose = 0, validation_split = 0.2) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.