Sequential: Initialize sequential model

View source: R/models.R

SequentialR Documentation

Initialize sequential model

Description

Use this function to construct an empty model to which layers will be added, or pass a list of layers directly to the function. The first layer passed to a Sequential model should have a defined input shape.

Usage

Sequential(...)

Arguments

...

keras model layers to construct the model from

Author(s)

Taylor B. Arnold, taylor.arnold@acm.org

References

Chollet, Francois. 2015. Keras: Deep Learning library for Theano and TensorFlow.

See Also

Other model functions: LoadSave, Predict, keras_compile, keras_fit

Other layers: Activation, ActivityRegularization, AdvancedActivation, BatchNormalization, Conv, Dense, Dropout, Embedding, Flatten, GaussianNoise, LayerWrapper, LocallyConnected, Masking, MaxPooling, Permute, RNN, RepeatVector, Reshape

Examples

if(keras_available()) {
  X_train <- matrix(rnorm(100 * 10), nrow = 100)
  Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)

  mod <- Sequential()
  mod$add(Dense(units = 50, input_shape = dim(X_train)[2]))
  mod$add(  Dropout(rate = 0.5))
  mod$add(Activation("relu"))
  mod$add(Dense(units = 3))
  mod$add(ActivityRegularization(l1 = 1))
  mod$add(Activation("softmax"))
  keras_compile(mod,  loss = 'categorical_crossentropy', optimizer = RMSprop())

  keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
            verbose = 0, validation_split = 0.2)
  
  # You can also add layers directly as arguments to Sequential()

  mod <- Sequential(
    Dense(units = 50, input_shape = ncol(X_train)),
    Dropout(rate = 0.5),
    Activation("relu"),
    Dense(units = 3),
    ActivityRegularization(l1 = 1),
    Activation("softmax")
  )
  keras_compile(mod,  loss = 'categorical_crossentropy', optimizer = RMSprop())
  
  keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5,
            verbose = 0, validation_split = 0.2)
  
}


kerasR documentation built on Aug. 17, 2022, 5:06 p.m.