Nothing
## ----setup, include=FALSE-----------------------------------------------------
# CRAN will not have keras installed, so create static vignette
knitr::opts_chunk$set(eval = FALSE)
## -----------------------------------------------------------------------------
# library(kerasR)
# mod <- Sequential()
## -----------------------------------------------------------------------------
# mod$add(Dense(units = 50, input_shape = 13))
## -----------------------------------------------------------------------------
# mod$add(Activation("relu"))
## -----------------------------------------------------------------------------
# mod$add(Dense(units = 1))
## -----------------------------------------------------------------------------
# keras_compile(mod, loss = 'mse', optimizer = RMSprop())
## -----------------------------------------------------------------------------
# boston <- load_boston_housing()
# X_train <- scale(boston$X_train)
# Y_train <- boston$Y_train
# X_test <- scale(boston$X_test)
# Y_test <- boston$Y_test
## -----------------------------------------------------------------------------
# keras_fit(mod, X_train, Y_train,
# batch_size = 32, epochs = 200,
# verbose = 1, validation_split = 0.1)
## -----------------------------------------------------------------------------
# pred <- keras_predict(mod, normalize(X_test))
# sd(as.numeric(pred) - Y_test) / sd(Y_test)
## -----------------------------------------------------------------------------
# mnist <- load_mnist()
# X_train <- mnist$X_train
# Y_train <- mnist$Y_train
# X_test <- mnist$X_test
# Y_test <- mnist$Y_test
# dim(X_train)
## -----------------------------------------------------------------------------
# X_train <- array(X_train, dim = c(dim(X_train)[1], prod(dim(X_train)[-1]))) / 255
# X_test <- array(X_test, dim = c(dim(X_test)[1], prod(dim(X_test)[-1]))) / 255
## -----------------------------------------------------------------------------
# Y_train <- to_categorical(mnist$Y_train, 10)
## -----------------------------------------------------------------------------
# mod <- Sequential()
#
# mod$add(Dense(units = 512, input_shape = dim(X_train)[2]))
# mod$add(LeakyReLU())
# mod$add(Dropout(0.25))
#
# mod$add(Dense(units = 512))
# mod$add(LeakyReLU())
# mod$add(Dropout(0.25))
#
# mod$add(Dense(units = 512))
# mod$add(LeakyReLU())
# mod$add(Dropout(0.25))
#
# mod$add(Dense(10))
# mod$add(Activation("softmax"))
## -----------------------------------------------------------------------------
# keras_compile(mod, loss = 'categorical_crossentropy', optimizer = RMSprop())
# keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5, verbose = 1,
# validation_split = 0.1)
## -----------------------------------------------------------------------------
# Y_test_hat <- keras_predict_classes(mod, X_test)
# table(Y_test, Y_test_hat)
# mean(Y_test == Y_test_hat)
## -----------------------------------------------------------------------------
# mnist <- load_mnist()
#
# X_train <- array(mnist$X_train, dim = c(dim(mnist$X_train), 1)) / 255
# Y_train <- to_categorical(mnist$Y_train, 10)
# X_test <- array(mnist$X_test, dim = c(dim(mnist$X_test), 1)) / 255
# Y_test <- mnist$Y_test
## -----------------------------------------------------------------------------
# mod <- Sequential()
#
# mod$add(Conv2D(filters = 32, kernel_size = c(3, 3),
# input_shape = c(28, 28, 1)))
# mod$add(Activation("relu"))
# mod$add(Conv2D(filters = 32, kernel_size = c(3, 3),
# input_shape = c(28, 28, 1)))
# mod$add(Activation("relu"))
# mod$add(MaxPooling2D(pool_size=c(2, 2)))
# mod$add(Dropout(0.25))
#
# mod$add(Flatten())
# mod$add(Dense(128))
# mod$add(Activation("relu"))
# mod$add(Dropout(0.25))
# mod$add(Dense(10))
# mod$add(Activation("softmax"))
## -----------------------------------------------------------------------------
# keras_compile(mod, loss = 'categorical_crossentropy', optimizer = RMSprop())
# keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 5, verbose = 1,
# validation_split = 0.1)
## -----------------------------------------------------------------------------
# Y_test_hat <- keras_predict_classes(mod, X_test)
# table(Y_test, Y_test_hat)
# mean(Y_test == Y_test_hat)
## -----------------------------------------------------------------------------
# imdb <- load_imdb(num_words = 500, maxlen = 100)
#
# X_train <- pad_sequences(imdb$X_train[1:4000], maxlen = 100)
# Y_train <- imdb$Y_train[1:4000]
# X_test <- pad_sequences(imdb$X_train[4001:5736], maxlen = 100)
# Y_test <- imdb$Y_train[4001:5736]
## -----------------------------------------------------------------------------
# mod <- Sequential()
#
# mod$add(Embedding(500, 32, input_length = 100, input_shape = c(100)))
# mod$add(Dropout(0.25))
#
# mod$add(Flatten())
#
# mod$add(Dense(256))
# mod$add(Dropout(0.25))
# mod$add(Activation('relu'))
#
# mod$add(Dense(1))
# mod$add(Activation('sigmoid'))
## -----------------------------------------------------------------------------
# keras_compile(mod, loss = 'binary_crossentropy', optimizer = RMSprop(lr = 0.00025))
# keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 10, verbose = 1,
# validation_split = 0.1)
## -----------------------------------------------------------------------------
# Y_test_hat <- keras_predict(mod, X_test)
# table(Y_test, round(Y_test_hat))
# mean(Y_test == as.numeric(round(Y_test_hat)))
## -----------------------------------------------------------------------------
# mod <- Sequential()
#
# mod$add(Embedding(500, 32, input_length = 100, input_shape = c(100)))
# mod$add(Dropout(0.25))
#
# mod$add(LSTM(32))
#
# mod$add(Dense(256))
# mod$add(Dropout(0.25))
# mod$add(Activation('relu'))
#
# mod$add(Dense(1))
# mod$add(Activation('sigmoid'))
## -----------------------------------------------------------------------------
# keras_compile(mod, loss = 'binary_crossentropy', optimizer = RMSprop(lr = 0.00025))
# keras_fit(mod, X_train, Y_train, batch_size = 32, epochs = 10, verbose = 1,
# validation_split = 0.1)
## -----------------------------------------------------------------------------
# Y_test_hat <- keras_predict(mod, X_test)
# mean(Y_test == as.numeric(round(Y_test_hat)))
## ---- eval = FALSE------------------------------------------------------------
# keras_save(mod, "full_model.h5")
# keras_save_weights(mod, "weights_model.h5")
# keras_model_to_json(mod, "model_architecture.json")
## ---- eval = FALSE------------------------------------------------------------
# mod <- keras_load("full_model.h5")
# keras_load_weights(mod, tf)
# mod <- keras_model_to_json("model_architecture.json")
## -----------------------------------------------------------------------------
# inception <- InceptionV3(weights='imagenet')
## -----------------------------------------------------------------------------
# img <- load_img("elephant.jpg", target_size = c(299, 299))
# x <- img_to_array(img)
# x <- expand_dims(x, axis = 0)
## -----------------------------------------------------------------------------
# x <- x / 255
## -----------------------------------------------------------------------------
# pred <- keras_predict(inception, x)
## -----------------------------------------------------------------------------
# > unlist(decode_predictions(pred, model = "InceptionV3", top = 3))
# [1] "n01871265" "tusker" "0.546035408973694"
# [4] "n02504013" "Indian_elephant" "0.247862368822098"
# [7] "n02504458" "African_elephant" "0.143739387392998"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.