ef: Exceedance function estimation

Description Usage Arguments Details Value Author(s) References Examples

Description

We compute the exceedance probability, that is, the probability that a specified value c (a magnitude of a seismic event, a flow level... ) will be exceeded in D time units.

Usage

1
2
3
ef(type_kernel = "n", vec_data, c,
 bw = PBbw(type_kernel = "n", vec_data, 2),
 Dmin = 0, Dmax = 15, size_grid = 50, lambda)

Arguments

type_kernel

The kernel function. You can use four types: "e" Epanechnikov, "n" Normal, "b" Biweight and "t" Triweight. The Normal kernel is used by default.

vec_data

The data sample (earthquake magnitudes, flow levels, wind speed...)

c

The concrete level in which we want to compute the exceedance probability.

bw

The bandwidth parameter. The plug-in method of Polansky and Baker (2000) is used by default.

Dmin

Minimum value for D time units (years, days... ). Default is Dmin=0.

Dmax

Maximum value for D time units (years, days... ). Default is Dmax=15.

size_grid

Length of a grid in which we compute the exceedance function. The size is 50 by default.

lambda

The mean activity rate.

Details

The exceedance function is usually calculated assuming that the occurrence process of events follows a Poisson one. In this case, the exceedance function, that is, the probability of an specific value c is calculated as

R(c,D) = 1- exp(-λ D(1-F_h(c)).

See, for example, Orlecka-Sikora (2008) or Quintela del Rio (2010) for earthquake data applications.

Value

Returns a list containing:

Estimated_values

Vector containing the estimated function.

grid

The used grid.

bw

Value of the bandwidth.

Author(s)

Graciela Estevez Perez graci@udc.es and Alejandro Quintela del Rio aquintela@udc.es

References

Orlecka-Sikora, B. (2008) Resampling methods for evaluating the uncertainty of the nonparametric magnitude distribution estimation in the probabilistic seismic hazard analysis. Tectonophysics 456, 38–51.

Quintela-del-Rio, A. (2010) On non-parametric techniques for area-characteristic seismic hazard parameters. Geophysical Journal International 180, pp. 339–346.

Quintela-del-Rio, A. and Estevez-Perez, G. (2012) Nonparametric Kernel Distribution Function Estimation with kerdiest: An R Package for Bandwidth Choice and Applications, Journal of Statistical Software 50(8), pp. 1-21. URL http://www.jstatsoft.org/v50/i08/.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Working with earthquake data. We use the catalogue of the National
# Geographic Institute (IGN) of Spain and select the data of the Northwest
# of the Iberian Peninsula.
data(nwip)
require(chron)
require(date)
# we consider the data with magnitude greater than 3
mg<-nwip$magnitude[nwip$magnitude>3.0]
x1<-nwip$year
x2<-nwip$month
x3<-nwip$day
ys<-paste(x1,x2,x3)
earthquake_date<-as.character(ys)
y1s<-as.date(earthquake_date, order = "ymd")
# we compute the total number of years
y2s<-as.POSIXct(y1s)
z<-years(y2s)
n.years<-length(levels(z))
# the mean rate of earthquakes per year
lambda<-length(mg)/n.years
## Not run: 
# we estimate the exceedance probability for a value of the
# the magnitude = 4
est<-ef(vec_data=mg, m_c=4, lambda=lambda)
plot(est$grid, est$Estimated_values, type="l", 
xlab="years", ylab="Probability of Exceedance")

## End(Not run)

kerdiest documentation built on May 2, 2019, 3:24 a.m.