Description Usage Arguments Value Author(s) References Examples
Computes the value of the kernel estimator of the distribution function, in a single value or in a grid. Four possibilites for the kernel function are implemented, and the bandwidth parameter can be directly calculated by the plug-in method of Polansky and Baker (2000).
1 2 |
type_kernel |
The kernel function. You can use four types: "e" Epanechnikov, "n" Normal, "b" Biweight and "t" Triweight. The Normal kernel is used by default. |
vec_data |
The data sample. |
y |
The single value or the grid vector where the distribution function is estimated. By default, a grid of 100 equidistant points from the minimum to the maximum of the data sample is selected. |
bw |
The bandwidth used. If it is not provided, the Plug-in bandwidth of Polansky and Baker (2000) is computed. |
Returns a list containing:
Estimated_values |
Vector containing the estimated function in the grid values. |
grid |
The used grid. |
bw |
Value of the bandwidth. |
Graciela Estevez Perez graci@udc.es and Alejandro Quintela del Rio aquintela@udc.es
Reiss, R.D. (1981) Nonparametric estimation of smooth distribution functions, Scandinavian Journal of Statistics 8, pp:116-119.
Simonoff, J. (1996) Smoothing Methods in Statistics, Springer, New York.
Polansky, A.M. and Baker, E.R. (2000) Multistage plug-in bandwidth selection for kernel distribution function estimates, Journal of Statistical Computation and Simulation 65, pp. 63-80.
Quintela-del-Rio, A. and Estevez-Perez, G. (2012) Nonparametric Kernel Distribution Function Estimation with kerdiest: An R Package for Bandwidth Choice and Applications, Journal of Statistical Software 50(8), pp. 1-21. URL http://www.jstatsoft.org/v50/i08/.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # Comparison of three bandwidth selection methods
x<-rnorm(100)
# The bandwidths by cross-validation, plug-in of Altman and Leger
# and plug-in of Polansky and Baker are calculated, using a normal kernel and a
# standard setting of parameters, in each case
h_CV<-CVbw(vec_data=x)$bw
# plug-in of Altman and Leger
h_AL<- ALbw(vec_data=x)
# plug-in of Polansky and Baker
h_PB<- PBbw(vec_data=x)
## Not run: print(h_CV); print(h_AL); print(h_PB)
# plot of the three estimates together with the real distribution
F_CV<-kde(vec_data=x, bw= h_CV)
F_AL<-kde(vec_data=x, bw= h_AL)
F_PB<-kde(vec_data=x, bw= h_PB)
y<-F_CV$grid
Ft<-pnorm(y)
require(graphics)
plot(y,Ft, ylab="Distribution", xlab="data", type="l", lty=1)
lines(y,F_CV$Estimated_values, type="l",lty=2)
lines(y,F_AL$Estimated_values, type="l",lty=3)
lines(y,F_PB$Estimated_values, type="l",lty=4)
legend(1,0.4,c("real","F_CV","F_AL","F_PB"),lty=1:4)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.