kernelEval | R Documentation |
Evaluation of kernels
kernelEval(tZ, kernel = c("linear", "poly", "gaussian"), ...)
linKernelEval(tZ)
gaussKernelEval(tZ, sigma = 1)
polyKernelEval(tZ, a = 0, d = 2)
genericKernelEval(tZ, kernel_func, ...)
gaussKernelEval_multipleRhos(tZ, rho)
polyKernelEval_multipleRhos(tZ, rho, d = 2)
tZ |
a |
kernel |
which kernel is evaluated by |
... |
other arguments to be passed to be passed to the evaluated kernel function. |
sigma |
standard-deviation parameter for the |
a |
TODO of the polynomial for the |
d |
power of the polynomial. Default is |
kernel_func |
a function, whose first argument should be |
rho |
either a single rho to evaluate the kernel at, or a vector of rhos |
kernelEval
works only for gaussian, polynomial and linear kernels currently.
genericKernelEval
For polyKernelEval_multipleRhos
, one should have rho
> 0 to get
basis of monomials up to degree d
kernelEval
, linKernelEval
, gaussKernelEval
, and genericKernelEval
return an N x N
matrix with entries K(Z[i,], Z[j,])
[persons i,j]
gaussKernelEval_multipleRhos
and polyKernelEval_multipleRhos
return
a matrix of dimension Q x N^2
, where Q
is the length
of rho
,
each row corresponds to a rho (puns!) to get the actual kernel matrix associated with a particular
value of rho, if output is G
, take matrix(G[i,], N)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.