Man pages for kerntools
Kernel Functions and Tools for Machine Learning Applications

AccAccuracy
Acc_rndAccuracy of a random model
aggregate_impAggregate importances
Boots_CIConfidence Interval using Bootstrap
BrayCurtisKernels for count data
centerKCentering a kernel matrix
centerXCentering a squared matrix by row or column
Chi2Chi-squared kernel
cLinearCompositional kernels
cosNormCosine normalization of a kernel matrix
cosnormXCosine normalization of a matrix
desparsifyThis function deletes those columns and/or rows in a...
DiracKernels for categorical variables
dummy_dataConvert categorical data to dummies.
dummy_varLevels per factor variable
estimate_gammaGamma hyperparameter estimation (RBF kernel)
F1F1 score
FrobeniusFrobenius kernel
frobNormFrobenius normalization
heatKKernel matrix heatmap
histKKernel matrix histogram
JaccardKernels for sets
KendallKendall's tau kernel
kerntools-packagekerntools: Kernel Functions and Tools for Machine Learning...
kPCAKernel PCA
kPCA_arrowsPlot the original variables' contribution to a PCA plot
kPCA_impContributions of the variables to the Principal Components...
KTAKernel-target alignment
LaplaceLaplacian kernel
LinearLinear kernel
minmaxMinmax normalization
MKCMultiple Kernel (Matrices) Combination
nmseNMSE (Normalized Mean Squared Error)
Normal_CIConfidence Interval using Normal Approximation
plotImpImportance barplot
PrecPrecision or PPV
ProcrustesProcrustes Analysis
RBFGaussian RBF (Radial Basis Function) kernel
RecRecall or Sensitivity or TPR
showdataShowdata
simKKernel matrix similarity
soilSoil microbiota (raw counts)
SpeSpecificity or TNR
SpectrumSpectrum kernel
svm_impSVM feature importance
TSSTotal Sum Scaling
vonNeumannVon Neumann entropy
kerntools documentation built on April 3, 2025, 7:52 p.m.