Nothing
#' Glass Identification Database
#'
#' A data frame with 214 observations, where the problem is to predict the type
#' of glass in terms of their oxide content (i.e. Na, Fe, K, etc). The study of
#' classification of types of glass was motivated by criminological
#' investigation. At the scene of the crime, the glass left can be used as
#' evidence... if it is correctly identified!
#'
#'
#' @name glass
#' @docType data
#' @format A data frame with 214 observations on the following 11 variables.
#' \describe{ \item{Id}{Id number.} \item{RI}{Refractive index.}
#' \item{Na}{Sodium (unit measurement: weight percent in corresponding oxide,
#' as are attributes 4-10).} \item{Mg}{Magnesium.} \item{Al}{Aluminum.}
#' \item{Si}{Silicon.} \item{K}{Potassium.} \item{Ca}{Calcium.}
#' \item{Ba}{Barium.} \item{Fe}{Iron.} \item{Type}{Type of glass: (class
#' attribute) \cr \code{1} building windows float processed \cr \code{2}
#' building windows non float processed \cr \code{3} vehicle windows float
#' processed \cr \code{4} vehicle windows non float processed (none in this
#' database) \cr \code{5} containers \cr \code{6} tableware \cr \code{7}
#' headlamps } }
#' @source \itemize{ \item Creator: B. German, Central Research Establishment,
#' Home Office Forensic Science Service, Aldermaston, Reading, Berkshire RG7
#' 4PN \item Donor: Vina Spiehler, Ph.D., DABFT, Diagnostic Products
#' Corporation } The data have been taken from the UCI Machine Learning
#' Database Repository \cr
#' \url{https://archive.ics.uci.edu/} \cr and were
#' converted to R format by \email{klaus.schliep@gmail.com}.
#' @keywords datasets
#' @examples
#'
#' data(glass)
#' str(glass)
#'
NULL
#' Johns Hopkins University Ionosphere Database
#'
#' This radar data was collected by a system in Goose Bay, Labrador. This
#' system consists of a phased array of 16 high-frequency antennas with a total
#' transmitted power on the order of 6.4 kilowatts. See the paper for more
#' details. The targets were free electrons in the ionosphere. "Good" radar
#' returns are those showing evidence of some type of structure in the
#' ionosphere. "Bad" returns are those that do not; their signals pass through
#' the ionosphere.
#'
#' Received signals were processed using an autocorrelation function whose
#' arguments are the time of a pulse and the pulse number. There were 17 pulse
#' numbers for the Goose Bay system. Instances in this database are described
#' by 2 attributes per pulse number, corresponding to the complex values
#' returned by the function resulting from the complex electromagnetic signal.
#'
#'
#' @name ionosphere
#' @docType data
#' @format A data frame with 351 observations on the following 35 variables.
#' The first 34 continuous covariables are used for the prediction. The 35th
#' attribute is either \code{g} ("good") or \code{b} ("bad") according to the
#' definition summarized above. This is a binary classification task.
#' @source % \itemize{\item Vince Sigillito (vgs@aplcen.apl.jhu.edu), Space
#' Physics Group, Applied Physics Laboratory, Johns Hopkins University, Johns
#' Hopkins Road, Laurel, MD 20723
#'
#' The data have been taken from the UCI Machine Learning Database Repository
#' \cr \url{https://archive.ics.uci.edu/}\cr and were
#' converted to R format by \email{klaus.schliep@gmail.com }.
#' @keywords datasets
#' @examples
#'
#' data(ionosphere)
#'
NULL
#' Weighted k-Nearest Neighbors Classification and Clustering
#'
#' Weighted k-Nearest Neighbors Classification, Regression and spectral
#' Clustering
#'
#' The complete list of functions can be displayed with \code{library(help =
#' kknn)}.
#'
#'
#' @name kknn-package
#' @docType package
#' @author Klaus Schliep \cr Klaus Hechenbichler
#'
#' Maintainer: Klaus Schliep <klaus.schliep@@gmail.com>
#' @references Hechenbichler K. and Schliep K.P. (2004) \emph{Weighted
#' k-Nearest-Neighbor Techniques and Ordinal Classification}, Discussion Paper
#' 399, SFB 386, Ludwig-Maximilians University Munich
#' (\doi{10.5282/ubm/epub.1769})
#'
#' Hechenbichler K. (2005) \emph{Ensemble-Techniken und ordinale
#' Klassifikation}, PhD-thesis
#' @useDynLib kknn, .registration = TRUE
#' @keywords internal
"_PACKAGE"
#' Munich Rent Standard Database (1994)
#'
#' Many german cities compose so-called rent standards to make a decision
#' making instrument available to tenants, landlords, renting advisory boards
#' and experts. The rent standards are used in particular for the determination
#' of the local comparative rent (i.e. net rent as a function of household
#' size, equipment, year of construction, etc.). For the composition of the
#' rent standards, a representative random sample is drawn from all relevant
#' households, and the interesting data are determined by interviewers by means
#' of questionnaires. The dataset contains the data of 1082 households
#' interviewed for the munich rent standard 1994.
#'
#'
#' @name miete
#' @docType data
#' @format A data frame with 1082 observations on the following 18 variables.
#' \describe{ \item{nm}{Net rent in DM.} \item{wfl}{Floor space in sqm.}
#' \item{bj}{Year of construction.} \item{bad0}{Bathroom in apartment?\cr 1 :
#' no\cr 0 : yes } \item{zh}{Central heating?\cr 1 : yes\cr 0 : no }
#' \item{ww0}{Hot water supply?\cr 1 : no\cr 0 : yes }
#'
#' \item{badkach}{Tiled bathroom?\cr 1 : yes\cr 0 : no } \item{fenster}{Window
#' type:\cr 1 : plain windows\cr 0 : state-of-the-art windows }
#' \item{kueche}{Kitchen type\cr 1 : well equipped kitchen\cr 0 : plain kitchen
#' } \item{mvdauer}{Lease duration in years.} \item{bjkat}{Age category of the
#' building (bj categorized)\cr 1 : built before 1919\cr 2 : built between 1919
#' and 1948\cr 3 : built between 1949 and 1965\cr 4 : built between 1966 and
#' 1977\cr 5 : built between 1978 and 1983\cr 6 : built after 1983 }
#' \item{wflkat}{Floor space category (wfl categorized):\cr 1 : less than 50
#' sqm\cr 2 : between 51 sqm and 80 sqm\cr 3 : at least 81 sqm }
#' \item{nmqm}{Net rent per sqm.} \item{rooms}{Number of rooms in household.}
#'
#' \item{nmkat}{Net rent category (nm categorized):\cr 1 : less than 500 DM\cr
#' 2 : between 500 DM and 675 DM\cr 3 : between 675 DM and 850 DM\cr 4 :
#' between 850 DM and 1150 DM\cr 5 : at least 1150 DM } \item{adr}{Address
#' type:\cr 1 : bad\cr 2 : average\cr 3 : good }
#'
#' \item{wohn}{Residential type:\cr 1 : bad\cr 2 : average\cr 3 : good } }
#' @source Fahrmeir, L., Kuenstler, R., Pigeot, I. und Tutz, G. (1997):
#' \emph{Statistik: der Weg zur Datenanalyse}, Springer, Berlin.
## \url{https://www.stat.lmu.de/service/datenarchiv}
#'
#' The data were converted to R format by \email{klaus.schliep@gmail.com}.
#' @keywords datasets
#' @examples
#'
#' data(miete)
#' str(miete)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.