| sknn | R Documentation | 
Function for simple knn classification.
sknn(x, ...)
## Default S3 method:
sknn(x, grouping, kn = 3, gamma=0, ...)
## S3 method for class 'data.frame'
sknn(x, ...)
## S3 method for class 'matrix'
sknn(x, grouping, ..., subset, na.action = na.fail)
## S3 method for class 'formula'
sknn(formula, data = NULL, ..., subset, na.action = na.fail)
| x | matrix or data frame containing the explanatory variables 
(required, if  | 
| grouping | factor specifying the class for each observation 
(required, if  | 
| formula | formula of the form  | 
| data | Data frame from which variables specified in  | 
| kn | Number of nearest neighbours to use. | 
| gamma | gamma parameter for rbf in knn. If  | 
| subset | An index vector specifying the cases to be used in the training sample. (Note: If given, this argument must be named.) | 
| na.action | specify the action to be taken if  | 
| ... | currently unused | 
If gamma>0 an gaussian like density is used to weight the classes of the kn nearest neighbors. 
weight=exp(-gamma*distance). This is similar to an rbf kernel. 
If the distances are large it may be useful to scale the data first.
A list containing the function call.
Karsten Luebke, karsten.luebke@fom.de
predict.sknn, knn
data(iris)
x <- sknn(Species ~ ., data = iris)
x <- sknn(Species ~ ., gamma = 4, data = iris)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.