lcor | R Documentation |
Computes the Lancaster correlation coefficient.
lcor(x, y = NULL, type = c("rank", "linear"))
x |
a numeric vector, or a matrix or data frame with two columns. |
y |
NULL (default) or a vector with same length as x. |
type |
a character string indicating which lancaster correlation is to be computed. One of "rank" (default), or "linear": can be abbreviated. |
Let F_X
and F_Y
be the distribution functions of X
and Y
, and define
X^* = \Phi^{-1}(F_X(X)), \quad Y^* = \Phi^{-1}(F_Y(Y)),
where \Phi^{-1}
is the standard normal quantile function. Furthermore for X
and Y
with finite fourth moment, let
\tilde{X} = (X - \mathbb{E}(X)) / \operatorname{sd}(X), \quad \tilde{Y} = (Y - \mathbb{E}(Y)) / \operatorname{sd}(Y).
Then
\rho_L(X,Y) = \max\{|\operatorname{Cor}_{\text{Pearson}}(X^*,Y^*)|,\; | \operatorname{Cor}_{\text{Pearson}}((X^*)^2,(Y^*)^2)|\}
and
\rho_{L,1}(X,Y) = \max\{|\operatorname{Cor}_{\text{Pearson}}(X,Y)|,\; | \operatorname{Cor}_{\text{Pearson}}((\tilde{X})^2,(\tilde{Y})^2)|\}
are called the Lancaster correlation coefficient and the linear Lancaster correlation coefficient, respectively. Two estimation methods are supported:
Linear estimator for \bold{\rho_{L,1}}
(type = "linear"
): Consider \rho_{L1} = \operatorname{Cor}_{\text{Pearson}}(X,Y)
and \rho_{L2} = \operatorname{Cor}_{\text{Pearson}}((\tilde{X})^2,(\tilde{Y})^2)
.
Let \hat\rho_{L1}
be the sample Pearson correlation and \hat\rho_{L2}
the empirical correlation of the squares of the empirically standardized observations, and set
\hat\rho_{L,1} = \max\{\,|\hat\rho_{L1}|,\;|\hat\rho_{L2}|\,\}
.
Rank-based estimator for \bold{\rho_{L}}
(type = "rank"
): Consider \rho_{R1} = \operatorname{Cor}_{\text{Pearson}}(X^*,Y^*)
and \rho_{R2} = \operatorname{Cor}_{\text{Pearson}}((X^*)^2,(Y^*)^2)
.
Let Q_i
and R_i
be the ranks of X_i
and Y_i
, within X_1,...,X_n
or Y_1,...,Y_n
respectively. Define
\hat\rho_{R1} = \frac{1}{n\,s_a^2}\sum_{j=1}^n a(Q_j)\,a(R_j),
\hat\rho_{R2} = \frac{1}{n\,s_b^2}\sum_{j=1}^n \bigl(b(Q_j)-\bar b\bigr)\,\bigl(b(R_j)-\bar b\bigr),
where the scores are, for j=1,...,n
,
a(j) = \Phi^{-1}\!\Bigl(\frac{j}{n+1}\Bigr), \quad b(j)=a(j)^2,
\bar b=\frac{1}{n}\sum_{j=1}^n b(j), \quad
s_a^2 = \frac{1}{n}\sum_{j=1}^n\bigl(a(j)-\bar a\bigr)^2, \quad
s_b^2 = \frac{1}{n}\sum_{j=1}^n\bigl(b(j)-\bar b\bigr)^2.
Finally, the rankābased Lancaster correlation is
\hat\rho_{L} = \max\bigl\{\,|\hat\rho_{R1}|, |\hat\rho_{R2}|\bigr\}.
the sample Lancaster correlation.
Hajo Holzmann, Bernhard Klar
Holzmann, Klar (2024). "Lancester correlation - a new dependence measure linked to maximum correlation". \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1111/sjos.12733")}
lcor.comp, lcor.ci, lcor.test
Sigma <- matrix(c(1,0.1,0.1,1), ncol=2)
R <- chol(Sigma)
n <- 1000
x <- matrix(rnorm(n*2), n)
lcor(x, type = "rank")
lcor(x, type = "linear")
x <- matrix(rnorm(n*2), n)
nu <- 2
y <- x / sqrt(rchisq(n, nu)/nu)
cor(y[,1], y[,2], method = "spearman")
lcor(y, type = "rank")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.