Nothing
#' Lancaster correlation
#'
#' @description
#' Computes the Lancaster correlation coefficient.
#'
#' @details
#' Let \eqn{F_X} and \eqn{F_Y} be the distribution functions of \eqn{X} and \eqn{Y}, and define
#' \deqn{X^* = \Phi^{-1}(F_X(X)), \quad Y^* = \Phi^{-1}(F_Y(Y)),}
#' where \eqn{\Phi^{-1}} is the standard normal quantile function. Furthermore for \eqn{X} and \eqn{Y} with finite fourth moment, let
#' \deqn{\tilde{X} = (X - \mathbb{E}(X)) / \operatorname{sd}(X), \quad \tilde{Y} = (Y - \mathbb{E}(Y)) / \operatorname{sd}(Y).}
#' Then
#' \deqn{\rho_L(X,Y) = \max\{|\operatorname{Cor}_{\text{Pearson}}(X^*,Y^*)|,\; | \operatorname{Cor}_{\text{Pearson}}((X^*)^2,(Y^*)^2)|\}}
#' and
#' \deqn{\rho_{L,1}(X,Y) = \max\{|\operatorname{Cor}_{\text{Pearson}}(X,Y)|,\; | \operatorname{Cor}_{\text{Pearson}}((\tilde{X})^2,(\tilde{Y})^2)|\}}
#' are called the Lancaster correlation coefficient and the linear Lancaster correlation coefficient, respectively.
#' Two estimation methods are supported:
#'
#' \itemize{
#' \item \strong{Linear estimator for \eqn{\bold{\rho_{L,1}}}} (\code{type = "linear"}): Consider \eqn{\rho_{L1} = \operatorname{Cor}_{\text{Pearson}}(X,Y)} and \eqn{\rho_{L2} = \operatorname{Cor}_{\text{Pearson}}((\tilde{X})^2,(\tilde{Y})^2)}.
#' Let \eqn{\hat\rho_{L1}} be the sample Pearson correlation and \eqn{\hat\rho_{L2}} the empirical correlation of the squares of the empirically standardized observations, and set
#' \eqn{\hat\rho_{L,1} = \max\{\,|\hat\rho_{L1}|,\;|\hat\rho_{L2}|\,\}}.
#'
#' \item \strong{Rank-based estimator for \eqn{\bold{\rho_{L}}}} (\code{type = "rank"}): Consider \eqn{\rho_{R1} = \operatorname{Cor}_{\text{Pearson}}(X^*,Y^*)} and \eqn{\rho_{R2} = \operatorname{Cor}_{\text{Pearson}}((X^*)^2,(Y^*)^2)}.
#' Let \eqn{Q_i} and \eqn{R_i} be the ranks of \eqn{X_i} and \eqn{Y_i}, within \eqn{X_1,...,X_n} or \eqn{Y_1,...,Y_n} respectively. Define
#' \deqn{\hat\rho_{R1} = \frac{1}{n\,s_a^2}\sum_{j=1}^n a(Q_j)\,a(R_j),}
#' \deqn{\hat\rho_{R2} = \frac{1}{n\,s_b^2}\sum_{j=1}^n \bigl(b(Q_j)-\bar b\bigr)\,\bigl(b(R_j)-\bar b\bigr),}
#' where the scores are, for \eqn{j=1,...,n},
#' \deqn{a(j) = \Phi^{-1}\!\Bigl(\frac{j}{n+1}\Bigr), \quad b(j)=a(j)^2,}
#' \deqn{\bar b=\frac{1}{n}\sum_{j=1}^n b(j), \quad
#' s_a^2 = \frac{1}{n}\sum_{j=1}^n\bigl(a(j)-\bar a\bigr)^2, \quad
#' s_b^2 = \frac{1}{n}\sum_{j=1}^n\bigl(b(j)-\bar b\bigr)^2.}
#' Finally, the rankābased Lancaster correlation is
#' \deqn{\hat\rho_{L} = \max\bigl\{\,|\hat\rho_{R1}|, |\hat\rho_{R2}|\bigr\}.}
#' }
#'
#' @param x a numeric vector, or a matrix or data frame with two columns.
#' @param y NULL (default) or a vector with same length as x.
#' @param type a character string indicating which lancaster correlation is to be computed. One of "rank" (default), or "linear": can be abbreviated.
#'
#' @return
#' the sample Lancaster correlation.
#'
#' @author Hajo Holzmann, Bernhard Klar
#'
#' @references
#' Holzmann, Klar (2024). "Lancester correlation - a new dependence measure linked to maximum correlation". \doi{https://doi.org/10.1111/sjos.12733}
#'
#' @seealso \code{\link{lcor.comp}, \link{lcor.ci}, \link{lcor.test}}
#'
#' @examples
#' Sigma <- matrix(c(1,0.1,0.1,1), ncol=2)
#' R <- chol(Sigma)
#' n <- 1000
#' x <- matrix(rnorm(n*2), n)
#' lcor(x, type = "rank")
#' lcor(x, type = "linear")
#'
#' x <- matrix(rnorm(n*2), n)
#' nu <- 2
#' y <- x / sqrt(rchisq(n, nu)/nu)
#' cor(y[,1], y[,2], method = "spearman")
#' lcor(y, type = "rank")
#'
#' @export
lcor = function(x, y = NULL, type = c("rank", "linear")) {
if (is.data.frame(x)) x = as.matrix(x)
if (!is.matrix(x) && is.null(y))
stop("supply both 'x' and 'y' or a matrix-like 'x'")
if (is.matrix(x)) {
y = x[,2]
x = x[,1]
}
type = match.arg(type)
if (!(type %in% c("rank", "linear")))
stop("type for lcor can only be rank or linear")
if (type == "rank") {
x = qnorm( (rank(x)-0.5) / length(x) )
y = qnorm( (rank(y)-0.5) / length(x) )
lc = max( abs(cor(x,y)), abs(cor(x^2,y^2)) )
return(lc)
}
if (type == "linear") {
x = scale(x)
y = scale(y)
lc = max( abs(cor(x,y)), abs( cor(x^2,y^2) ) )
return(lc)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.