Description Usage Arguments Value Author(s) Examples
Runs supervised fuzzy k-means (Hengl et al., 2004; doi: 10.1080/13658810310001620924) using a list of covariates layers provided as "SpatialPixelsDataFrame-class"
object. If class centres and variances are not provided, it first fits a multinomial logistic regression model (spmultinom
), then predicts the class centers and variances based on the output from the nnet::multinom
.
1 2 3 4 5 6 7 8 9 10 |
formulaString |
formula. |
observations |
SpatialPointsDataFrame. |
covariates |
SpatialPixelsDataFrame. |
class.c |
class centers (per variable). |
class.sd |
class standard deviation (per variable). |
fuzzy.e |
fuzzy coefficient. |
A fuzzy kmeans model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | if(requireNamespace("plotKML")){
library(plotKML)
library(sp)
library(nnet)
data(eberg)
# subset to 20%:
eberg <- eberg[runif(nrow(eberg))<.2,]
data(eberg_grid)
coordinates(eberg) <- ~X+Y
proj4string(eberg) <- CRS("+init=epsg:31467")
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")
# derive soil predictive components:
eberg_spc <- spc(eberg_grid, ~PRMGEO6+DEMSRT6+TWISRT6+TIRAST6)
# predict memberships:
formulaString = soiltype ~ PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10
eberg_sm <- spfkm(formulaString, eberg, eberg_spc@predicted)
# plot memberships:
pal = seq(0, 1, 1/50)
spplot(eberg_sm@mu, col.regions=grey(rev(pal)))
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.