Description Usage Arguments Value Note Author(s) Examples
Fit variogram using point data
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## S4 method for signature 'formula,data.frame,SpatialPixelsDataFrame'
fit.vgmModel(
formulaString.vgm,
rmatrix,
predictionDomain,
cov.model = "exponential",
dimensions = list("2D", "3D", "2D+T", "3D+T"),
lambda = 0.5,
psiR = NULL,
subsample = nrow(rmatrix),
ini.var,
ini.range,
fix.psiA = FALSE,
fix.psiR = FALSE,
...
)
|
formulaString.vgm |
formula. |
rmatrix |
data.frame with coordinates and values of covariates. |
predictionDomain |
SpatialPixelsDataFrame. |
cov.model |
covariance model type used by the geoR package. |
dimensions |
optional 2D or 3D dimensions. |
lambda |
transformation value used by the geoR package. |
psiR |
range parameter used by the geoR package. |
subsample |
number of subset of original samples. |
ini.var |
initial variance (sill) used by the geoR package. |
ini.range |
initial range parameter used by the geoR package. |
fix.psiA |
setting used by the geoR package. |
fix.psiR |
setting used by the geoR package. |
... |
optional arguments to pass to the geoR package. |
Fitted variogram model
Extends variogram fitting functionality from the geoR package.
Can be used for 2D or 3D point data sets, with and without trend variables.
Models need to be in the form zinc ~ dist
and only numeric variables are allowed.
Often reports Singular matrix. Covariates may have different orders of magnitude.
if the covariates are perfectly aligned.
1 2 3 4 5 6 | library("geoR")
library(rgdal)
demo(meuse, echo=FALSE)
vgm = fit.vgmModel(zinc~dist, as.data.frame(meuse), meuse.grid["dist"], lambda=1)
plot(variog(vgm$geodata))
lines(vgm$vgm)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.