fit.vgmModel: Fit variogram using point data

Description Usage Arguments Value Note Author(s) Examples

Description

Fit variogram using point data

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
## S4 method for signature 'formula,data.frame,SpatialPixelsDataFrame'
fit.vgmModel(
  formulaString.vgm,
  rmatrix,
  predictionDomain,
  cov.model = "exponential",
  dimensions = list("2D", "3D", "2D+T", "3D+T"),
  lambda = 0.5,
  psiR = NULL,
  subsample = nrow(rmatrix),
  ini.var,
  ini.range,
  fix.psiA = FALSE,
  fix.psiR = FALSE,
  ...
)

Arguments

formulaString.vgm

formula.

rmatrix

data.frame with coordinates and values of covariates.

predictionDomain

SpatialPixelsDataFrame.

cov.model

covariance model type used by the geoR package.

dimensions

optional 2D or 3D dimensions.

lambda

transformation value used by the geoR package.

psiR

range parameter used by the geoR package.

subsample

number of subset of original samples.

ini.var

initial variance (sill) used by the geoR package.

ini.range

initial range parameter used by the geoR package.

fix.psiA

setting used by the geoR package.

fix.psiR

setting used by the geoR package.

...

optional arguments to pass to the geoR package.

Value

Fitted variogram model

Note

Extends variogram fitting functionality from the geoR package. Can be used for 2D or 3D point data sets, with and without trend variables. Models need to be in the form zinc ~ dist and only numeric variables are allowed. Often reports Singular matrix. Covariates may have different orders of magnitude. if the covariates are perfectly aligned.

Author(s)

Tom Hengl

Examples

1
2
3
4
5
6
library("geoR")
library(rgdal)
demo(meuse, echo=FALSE)
vgm = fit.vgmModel(zinc~dist, as.data.frame(meuse), meuse.grid["dist"], lambda=1)
plot(variog(vgm$geodata))
lines(vgm$vgm)

landmap documentation built on Oct. 14, 2021, 5:24 p.m.