Nothing
## ----setup, include = FALSE---------------------------------------------------
options(tinytex.verbose = TRUE)
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(latentcor)
## ----data_generation----------------------------------------------------------
simdata = gen_data(n = 100, types = c("ter", "con"))
## ----data_output--------------------------------------------------------------
names(simdata)
## ----data_matrix--------------------------------------------------------------
X = simdata$X
head(X, n = 6L)
## ----data_plot----------------------------------------------------------------
simdata$plotX
## ----estimation---------------------------------------------------------------
estimate = latentcor(X, types = c("ter", "con"))
## ----estimation_output--------------------------------------------------------
names(estimate)
## ----zratios------------------------------------------------------------------
estimate$zratios
## ----Kendall------------------------------------------------------------------
estimate$K
## ----latent_correlation_pointwise---------------------------------------------
estimate$Rpointwise
## ----latent_correlation-------------------------------------------------------
estimate$R
## ----heatmap------------------------------------------------------------------
estimate$plotR
## ----mtcars-------------------------------------------------------------------
head(mtcars, n = 6L)
## ----unique-------------------------------------------------------------------
apply(mtcars, 2, table)
## ----mtcars_estimation--------------------------------------------------------
estimate_mtcars = latentcor(mtcars, types = c("con", "ter", "con", "con", "con", "con", "con", "bin", "bin", "ter", "con"))
## ----mtcars_types, message = FALSE--------------------------------------------
estimate_mtcars = latentcor(mtcars, types = get_types(mtcars))
## ----mtcars_estimation_output-------------------------------------------------
names(estimate_mtcars)
## ----mtcars_zratios-----------------------------------------------------------
estimate_mtcars$zratios
## ----mtcars_Kendall-----------------------------------------------------------
estimate_mtcars$K
## ----mtcars_latent_correlation_pointwise--------------------------------------
estimate_mtcars$Rpointwise
## ----mtcars_latent_correlation------------------------------------------------
estimate_mtcars$R
## ----mtcars_heatmap-----------------------------------------------------------
estimate_mtcars$plotR
## ----data_generation 2--------------------------------------------------------
simdata2 = gen_data(n = 100, types = c(rep("ter", 3), "con", rep("bin", 3)))
## ----types subsampling--------------------------------------------------------
types = get_types(simdata2$X)
types
## ----subsampling--------------------------------------------------------------
start_time = proc.time()
for (s in 1:10){
# Select a random subsample of size 80
subsample = sample(1:100, 80)
# Estimate latent correlation on subsample specifying the types
Rs = latentcor(simdata2$X[subsample, ], types = types)
}
proc.time() - start_time
## ----subsampling 2------------------------------------------------------------
start_time = proc.time()
for (s in 1:10){
# Select a random subsample of size 80
subsample = sample(1:100, 80)
# Estimate latent correlation on subsample specifying the types
Rs = latentcor(simdata2$X[subsample, ], types = get_types(simdata2$X))
}
proc.time() - start_time
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.