mt_make_model: Function to train Deep Learning Classification model for...

Description Usage Arguments Details Value Author(s) Examples

View source: R/mt_make_model.R

Description

Function is training h2o deep learning model to match classified patterns of the financial indicator. Main idea is to be able to detect Market Type by solely relying on the current indicator pattern. This is in the attempt to evaluate current market type for trading purposes.

Selected Market Periods could be manually classified according to the theory from Van K. Tharp:

  1. Bull normal, BUN

  2. Bull volatile, BUV

  3. Bear normal, BEN

  4. Bear volatile, BEV

  5. Sideways quiet, RAN

  6. Sideways volatile, RAV

For automatic classification, could only be used: BUN, BEN, RAN market types

[Experimental]

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
mt_make_model(
  indicator_dataset,
  num_bars = 64,
  timeframe = 60,
  path_model,
  path_data,
  activate_balance = TRUE,
  num_nn_options = 24,
  fixed_nn_struct = c(100, 100),
  num_epoch = 100,
  is_cluster = FALSE
)

Arguments

indicator_dataset

Data frame, Data set containing indicator patterns to train the model

num_bars

Integer, Number of bars used to detect pattern

timeframe

Integer, Data time frame in minutes.

path_model

String, Path where the models are be stored

path_data

String, Path where the aggregated historical data is stored, if exists, in rds format

activate_balance

Boolean, option to choose to balance market type classes or not, default TRUE

num_nn_options

Integer, value from 0 to 24 or more as multiple of 3. Used to change number of variants for 3 hidden layer structure. Random neural network structures will be generated. When value 0 is set then a fixed structure will be used as defined by parameter fixed_nn_struct. To avoid warnings make sure to set this value as multiple of 3. Higher values will increase computation time.

fixed_nn_struct

Integer vector with numeric elements, see par hidden in ?h2o.deeplearning, default value is c(100,100). Note this will only work if num_nn_options is 0

num_epoch

Integer, see parameter epochs in ?h2o.deeplearning, default value is 100 Higher number may lead to long code execution

is_cluster

Boolean, set TRUE to use automatically clustered data

Details

Function is using labeled dataset and tries several different random neural network structures. Once the best neural network is found then the better model is selected and stored. Dataset can be either manually labelled or generated using function mt_stat_transf.R. In the latter case parameter is_cluster shall be set to TRUE.

Value

Function is writing file object with the model

Author(s)

(C) 2020, 2021 Vladimir Zhbanko

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
library(dplyr)
library(magrittr)
library(readr)
library(h2o)
library(lazytrade)
library(stats)

path_model <- normalizePath(tempdir(),winslash = "/")
path_data <- normalizePath(tempdir(),winslash = "/")

data(macd_ML60M)

Sys.sleep(5)

# start h2o engine
h2o.init(nthreads = 2)


# performing Deep Learning Classification using manually labelled data
mt_make_model(indicator_dataset = macd_ML60M,
              num_bars = 64,
              timeframe = 60,
              path_model = path_model,
              path_data = path_data,
              activate_balance = TRUE,
              num_nn_options = 3,
              num_epoch = 10)

data(price_dataset_big)
data <- head(price_dataset_big, 5000) #reduce computational time

ai_class <- mt_stat_transf(indicator_dataset = data,
                      num_bars = 64,
                      timeframe = 60,
                      path_data = path_data,
                      mt_classes = c('BUN', 'BEN', 'RAN'))

# performing Deep Learning Classification using the custom function auto clustered data
mt_make_model(indicator_dataset = ai_class,
              num_bars = 64,
              timeframe = 60,
              path_model = path_model,
              path_data = path_data,
              activate_balance = TRUE,
              num_nn_options = 6,
              num_epoch = 10,
              is_cluster = TRUE)

# performing Deep Learning Classification using the custom function auto clustered data
# and fixed nn structure
mt_make_model(indicator_dataset = ai_class,
              num_bars = 64,
              timeframe = 60,
              path_model = path_model,
              path_data = path_data,
              activate_balance = TRUE,
              num_nn_options = 0,
              fixed_nn_struct = c(10, 10),
              num_epoch = 10,
              is_cluster = TRUE)
              
# stop h2o engine
h2o.shutdown(prompt = FALSE)

#set delay to insure h2o unit closes properly before the next test
Sys.sleep(5)

lazytrade documentation built on June 21, 2021, 1:08 a.m.