View source: R/mt_stat_evaluate.R
mt_stat_evaluate | R Documentation |
PURPOSE: Function that uses Deep Learning model and Time Series Column of the dataframe to find out specific market type of the financial asset it will also discard bad result outputting -1 if it is the case
mt_stat_evaluate(x, path_model, num_bars, timeframe)
x |
|
path_model |
String, path to the model |
num_bars |
Integer, Number of bars used to perform transformation |
timeframe |
Integer, timeframe in Minutes. |
dataframe with predicted value of the market type
(C) 2021 Vladimir Zhbanko
library(h2o)
library(magrittr)
library(dplyr)
library(readr)
library(lazytrade)
library(stats)
path_model <- normalizePath(tempdir(),winslash = "/")
path_data <- normalizePath(tempdir(),winslash = "/")
# start h2o engine (using all CPU's by default)
h2o.init(nthreads = 2)
data(price_dataset_big)
data <- head(price_dataset_big, 500) #reduce computational time
ai_class <- mt_stat_transf(indicator_dataset = data,
num_bars = 64,
timeframe = 60,
path_data = path_data,
mt_classes = c('BUN', 'BEN', 'RAN'))
# performing Deep Learning Classification using the custom function auto clustered data
mt_make_model(indicator_dataset = ai_class,
num_bars = 64,
timeframe = 60,
path_model = path_model,
path_data = path_data,
activate_balance = TRUE,
num_nn_options = 3,
num_epoch = 10,
is_cluster = TRUE)
# Use sample data
data(price_dataset)
# use one column for testing
x <- price_dataset[ ,2]
mt_stat_evaluate(x = x,
path_model = path_model,
num_bars = 64,
timeframe = 60)
h2o.shutdown(prompt = FALSE)
#set delay to insure h2o unit closes properly before the next test
Sys.sleep(5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.