View source: R/estimate_parameters_sc.R
estimate_parameters_sc | R Documentation |
Estimate the parameters of the self-correcting model using the [nloptr::nloptr()] function given a formatted dataset.
estimate_parameters_sc(
data,
x_grid = NULL,
y_grid = NULL,
t_grid = NULL,
parameter_inits = NULL,
upper_bounds = NULL,
opt_algorithm = "NLOPT_LN_SBPLX",
nloptr_options = list(maxeval = 400, xtol_rel = 1e-05, maxtime = NULL),
verbose = TRUE
)
data |
a matrix or data frame of times and locations in the form (time, x, y). |
x_grid |
a vector of grid values for x. |
y_grid |
a vector of grid values for y. |
t_grid |
a vector of grid values for t. |
parameter_inits |
a vector of parameter initialization values. |
upper_bounds |
a vector of upper bounds for time, x, and y. |
opt_algorithm |
the NLopt algorithm to use for optimization. |
nloptr_options |
a list of named options for [nloptr::nloptr()] including "maxeval", "xtol_rel", and "maxtime". |
verbose |
'TRUE' or 'FALSE' indicating whether to show progress of optimization. |
This function estimates the parameters of the self-correcting model presented in Møller et al. (2016) using the full likelihood. Details regarding the self-correcting model and the estimation procedure can be found in the references.
an [nloptr::nloptr()] object with details of the optimization including solution.
Møller, J., Ghorbani, M., & Rubak, E. (2016). Mechanistic spatio-temporal point process models for marked point processes, with a view to forest stand data. Biometrics, 72(3), 687–696. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/biom.12466")}.
# Load the small example data
data(small_example_data)
small_example_data <- small_example_data %>%
dplyr::mutate(time = power_law_mapping(size, .5)) %>%
dplyr::select(time, x, y)
# Define the grid values
x_grid <- seq(0, 25, length.out = 5)
y_grid <- seq(0, 25, length.out = 5)
t_grid <- seq(0, 1, length.out = 5)
# Define the parameter initialization values
parameter_inits <- c(1.5, 8.5, .015, 1.5, 3.2, .75, 3, .08)
# Define the upper bounds
upper_bounds <- c(1, 25, 25)
# Estimate the parameters
estimate_parameters_sc(
data = small_example_data,
x_grid = x_grid,
y_grid = y_grid,
t_grid = t_grid,
parameter_inits = parameter_inits,
upper_bounds = upper_bounds,
opt_algorithm = "NLOPT_LN_SBPLX",
nloptr_options = list(
maxeval = 25,
xtol_rel = 1e-2
),
verbose = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.