simulate_mpp | R Documentation |
Simulate a realization of a location dependent marked point process
simulate_mpp(
sc_params = NULL,
t_min = 0,
t_max = 1,
anchor_point = NULL,
raster_list = NULL,
scaled_rasters = FALSE,
mark_model = NULL,
xy_bounds = NULL,
include_comp_inds = FALSE,
competition_radius = 15,
correction = "none",
thinning = TRUE
)
sc_params |
vector of parameter values corresponding to (alpha_1, beta_1, gamma_1, alpha_2, beta_2, alpha_3, beta_3, gamma_3). |
t_min |
minimum value for time. |
t_max |
maximum value for time. |
anchor_point |
vector of (x,y) coordinates of point to condition on. |
raster_list |
list of raster objects. |
scaled_rasters |
'TRUE' or 'FALSE' indicating whether the rasters have been scaled. |
mark_model |
a model object (typically from |
xy_bounds |
a vector of domain bounds (2 for x, 2 for y). |
include_comp_inds |
'TRUE' or 'FALSE' indicating whether to generate and use competition indices as covariates. |
competition_radius |
distance for competition radius if |
correction |
type of correction to apply ("none" or "toroidal"). |
thinning |
'TRUE' or 'FALSE' indicating whether to thin the realization. |
a list containing the marked point process realization and the data frame of the realization.
# Specify the generating parameters of the self-correcting process
generating_parameters <- c(2, 8, .02, 2.5, 3, 1, 2.5, .2)
# Specify an anchor point
M_n <- matrix(c(10, 14), ncol = 1)
# Load the raster files
raster_paths <- list.files(system.file("extdata", package = "ldmppr"),
pattern = "\\.tif$", full.names = TRUE
)
raster_paths <- raster_paths[!grepl("_med\\.tif$", raster_paths)]
rasters <- lapply(raster_paths, terra::rast)
# Scale the rasters
scaled_raster_list <- scale_rasters(rasters)
# Load the example mark model
file_path <- system.file("extdata", "example_mark_model.rds", package = "ldmppr")
mark_model <- bundle::unbundle(readRDS(file_path))
# Simulate a realization
example_mpp <- simulate_mpp(
sc_params = generating_parameters,
t_min = 0,
t_max = 1,
anchor_point = M_n,
raster_list = scaled_raster_list,
scaled_rasters = TRUE,
mark_model = mark_model,
xy_bounds = c(0, 25, 0, 25),
include_comp_inds = TRUE,
competition_radius = 10,
correction = "none",
thinning = TRUE
)
# Plot the realization
plot_mpp(example_mpp$mpp, pattern_type = "simulated")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.