View source: R/class-regularizedSEMMixedPenalty.R
getTuningParameterConfiguration | R Documentation |
Returns the lambda, theta, and alpha values for the tuning parameters of a regularized SEM with mixed penalty.
getTuningParameterConfiguration(
regularizedSEMMixedPenalty,
tuningParameterConfiguration
)
regularizedSEMMixedPenalty |
object of type regularizedSEMMixedPenalty (see ?mixedPenalty) |
tuningParameterConfiguration |
integer indicating which tuningParameterConfiguration should be extracted (e.g., 1). See the entry in the row tuningParameterConfiguration of regularizedSEMMixedPenalty@fits and regularizedSEMMixedPenalty@parameters. |
data frame with penalty and tuning parameter settings
library(lessSEM)
# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.
dataset <- simulateExampleData()
lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 +
l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 +
l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"
lavaanModel <- lavaan::sem(lavaanSyntax,
data = dataset,
meanstructure = TRUE,
std.lv = TRUE)
# We can add mixed penalties as follows:
regularized <- lavaanModel |>
# create template for regularized model with mixed penalty:
mixedPenalty() |>
# add penalty on loadings l6 - l10:
addLsp(regularized = paste0("l", 11:15),
lambdas = seq(0,1,.1),
thetas = 2.3) |>
# fit the model:
fit()
getTuningParameterConfiguration(regularizedSEMMixedPenalty = regularized,
tuningParameterConfiguration = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.