stable_fit: Methods for parameter estimation of skew stable...

Description Usage Arguments Details Value Author(s) References Examples

Description

A set of functions are provided that perform the parameter estimation of skew stable distributions with different methods.

Usage

1
2
3
4
stable_fit_init(rnd, parametrization = 0L)

stable_fit_koutrouvelis(rnd, pars_init = as.numeric(c()),
  parametrization = 0L)

Arguments

rnd

Random sample

parametrization

Parametrization used for the skew stable distribution, as defined by JP Nolan (1997). By default, parametrization = 0.

pars_init

Vector with an initial estimation of the parameters. pars_init = c(alpha, beta, sigma, mu), where

  • alpha: shape / stability parameter, with 0 < alpha <= 2.

  • beta: skewness parameter, with -1 <= beta <= 1.

  • sigma: scale parameter, with 0 < sigma.

  • mu: location parameter, with mu real.

Details

Value

A numeric vector.

Author(s)

Javier Royuela del Val, Federico Simmross Wattenberg and Carlos Alberola López

Maintainer: Javier Royuela del Val jroyval@lpi.tel.uva.es

References

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
# Set alpha, beta, sigma and mu stable parameters in a vector
pars <- c(1.5, 0.9, 1, 0)

# Generate 300 random values
rnd <- stable_rnd(300, pars)

# Estimate the parameters of the skew stable distribution given
# the generated sample:

# Using the McCulloch's estimator:
pars_init <- stable_fit_init(rnd)

# Using the Koutrouvelis' estimator, with McCulloch estimation
# as a starting point:
pars_est_K <- stable_fit_koutrouvelis(rnd, pars_init)

# Using maximum likelihood estimator:
# pars_est_ML <- stable_fit_mle(rnd, pars_est_K)

# Using modified maximum likelihood estimator (see [1]):
# pars_est_ML2 <- stable_fit_mle2d(rnd, pars_est_K)

libstableR documentation built on May 2, 2019, 8:49 a.m.