Description Usage Arguments Details Value Author(s) References Examples
A set of functions are provided that perform the parameter estimation of skew stable distributions with different methods.
1 2 3 4 | stable_fit_init(rnd, parametrization = 0L)
stable_fit_koutrouvelis(rnd, pars_init = as.numeric(c()),
parametrization = 0L)
|
rnd |
Random sample |
parametrization |
Parametrization used for the skew stable distribution, as defined by JP Nolan (1997). By default, parametrization = 0. |
pars_init |
Vector with an initial estimation of the parameters.
|
stable_fit_init()
uses McCulloch's method of quantiles [3]. This is usually a good initialization for the rest of the methods.
stable_fit_koutrouvelis()
implements Koutrouvellis' method based on the characteristic function [4].
stable_fit_mle()
implements a Maximum likelihood estimation.
stable_fit_mle2()
implements a modified maximum likelihood estimation as described in [1].
A numeric vector.
Javier Royuela del Val, Federico Simmross Wattenberg and Carlos Alberola López
Maintainer: Javier Royuela del Val jroyval@lpi.tel.uva.es
[1] Royuela-del-Val J, Simmross-Wattenberg F, Alberola López C (2017). libstable: Fast, Parallel and High-Precision Computation of alpha-stable Distributions in R, C/C++ and MATLAB. Journal of Statistical Software, 78(1), 1-25. doi:10.18637/jss.v078.i01
[2] Chambers JM, Mallows CL, Stuck BW (1976). A Method for Simulating Stable Random Variables. Journal of the American Statistical Association, 71(354), 340-344. doi:10.1080/01621459.1976.10480344.
[3] McCulloch JH (1986). Simple Consistent Estimators of Stable Distribution Parameters. Communications in Statistics - Simulation and Computation, 15(4), 1109-1136. doi:10.1080/03610918608812563.
[4] Koutrouvelis IA (1981). An Iterative Procedure for the Estimation of the Parameters of Stable Laws. Communications in Statistics - Simulation and Computation, 10(1), 17-28. doi:10.1080/03610918108812189.
[5] Nolan JP (1997). Numerical Calculation of Stable Densities and Distribution Functions. Stochastic Models, 13(4) 759-774. doi:10.1080/15326349708807450.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # Set alpha, beta, sigma and mu stable parameters in a vector
pars <- c(1.5, 0.9, 1, 0)
# Generate 300 random values
rnd <- stable_rnd(300, pars)
# Estimate the parameters of the skew stable distribution given
# the generated sample:
# Using the McCulloch's estimator:
pars_init <- stable_fit_init(rnd)
# Using the Koutrouvelis' estimator, with McCulloch estimation
# as a starting point:
pars_est_K <- stable_fit_koutrouvelis(rnd, pars_init)
# Using maximum likelihood estimator:
# pars_est_ML <- stable_fit_mle(rnd, pars_est_K)
# Using modified maximum likelihood estimator (see [1]):
# pars_est_ML2 <- stable_fit_mle2d(rnd, pars_est_K)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.