Description Usage Arguments Details Value References Examples
Calculates of optimal number of neighbours by using the algorithm proposed by Kayo (see Ref.). Therefore the LLE alorithm is performed for every k-neighbourhood size.
1 2 |
X |
matrix object containing the input data. |
m |
intrinsic dimension of the data. |
kmin |
minimal value of k. |
kmax |
maximal value of k. |
plotres |
a logical values indicating wheather to plot the result. |
parallel |
a logical values indicating wheather to use parallel computation on multiple cpu cores. See snowfall. |
cpus |
number of cpus cores used for parallel computation. |
iLLE |
a logical values indicating wheater to use improved LLE (very CPU intensive). See |
Since the calculation of the optimal number of neighbours m is a step that is normally applied before the execution of LLE itself, the intrinsic dimension may be unknown. In this case, a good guess is sufficient. If no good estimation can be made the largest plausible value should be chosen.
res |
dataframe containing the number of neighbours and the calculated parameter ρ. The number of neighbours belonging to the smallest value of ρ should be chosen. |
Locally linear embedding algorithm - extensions and applications / Olga Kayo / Universitatis Ouluensis, Oulu, Finland / 2006
1 2 3 4 5 6 7 8 9 10 11 |
## Not run:
data( lle_scurve_data )
X <- lle_scurve_data
calc_k( X, 2, 1, 15 )
data( lle_scurve_data )
X <- lle_scurve_data
calc_k( X, 2, 1, 15, FALSE, TRUE, 4 )
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.