MDD: Mean Dominance Deviation effect

View source: R/model.matrix.diallel_v2.00.R

MDDR Documentation

Mean Dominance Deviation effect

Description

It relates to the difference between the average yield of selfed parents and the average yield of crosses. DD effect to fit Hayman2 model with lm function

Usage

MDD(P1, P2, type = "fix", data)

Arguments

P1

a variable for the first parent

P2

a variable for the second parent

type

a variable for the model

data

a 'data.frame' where to look for explanatory variables

Value

A design matrix for the MDD effect

Author(s)

Andrea Onofri, Niccolo' Terzaroli, Luigi Russi

References

Onofri, A., Terzaroli, N. & Russi, L. Linear models for diallel crosses: a review with R functions. Theor Appl Genet (2020). https://doi.org/10.1007/s00122-020-03716-8

Examples

data("hayman54")
MDD(Par1, Par2, data = hayman54)

lmDiallel documentation built on April 19, 2023, 5:10 p.m.